Active and Cognitive Vision Our laboratory is interested in elucidating the neural bases of the natural behavior associated with the processing of visual information. Vision is an active process that requires intermittent shifts of gaze – saccadic eye movements – interrupting periods of fixation during which perceptual processing analyzes both the foveal image (to identify local singularities) and the peripheral image (to select the next detail to analyze). The selection of a particular visual object among many potential targets for a saccade and the precise control of each saccade are two important processing stages underlying this natural visual behavior. In addition, the strategy involved in searching a visual image depends on knowledge about the target being searched and memory of the images details already examined. Multiple projects are undertaken in four lines of research: the neural basis of visual selection, visual working memory, audiovisual communication, and action control. Related projects are also being investigated in collaborations with other groups. Our laboratory studies visual behavior by training animals to perform tractable behavioral paradigms that are grounded in solid theoretical frameworks. The experimental approaches range from the recording of the extracellular activity of individual neurons to the manipulation of neuronal activity with pharmacological agent and electrical microstimulation. Data are analyzed with sophisticated analytical techniques and quantitative modeling. Research Projects: Visual Attention The
posterior parietal cortex is the final destination of a visual
processing stream dedicated to action, and we investigate neural
substrates of saccade target selection in a particular area of this
cerebral cortex, along with its projection to the superior colliculus,
a brainstem structure providing the motor command to the saccade
generation circuit. The activity of neurons is recorded in animals
performing tasks that probe the perceptual decisions that guide actions
and the motor decisions that regulate when actions are produced. A series of
experiments examines visual image processing by presenting visual
search displays that promote natural visual behavior, as in finding the
hero of “Where's Waldo?” cartoon book. We have found evidence that
neurons in the posterior parietal cortex and the superior colliculus
participate in the process of selecting a visual object from several
others by reflecting its identity, the knowledge of the observer about
this object, and the visual context. This work is expected to provide
new insights into the neural circuit and process signaling the goal of
actions. This
research is currently supported by an Operating Grant from the Canadian
Institutes of Health Research and by funding from the Harry Botterell
Foundation and the Chancellor's Research Award of Queen's University. Visual Working Memory A definitive aspect of working memory is that it is capacity limited: only a small number of items can be stored at one time. Our experiments aim to estimate the capacity limitation of the visual working memory of our animal model using a sequential comparison task and to identify its neural correlates. This work is expected to provide new insights into the neural processes underlying mnemonic representations. This
research is currently supported by a Discovery Grant & Accelerator
Supplement from the Natural Science & Engineering Research Council. Action Control The control of action – such as saccades – entails not only signals that can initiate and execute movements but also signals that can cancel already commanded movements. Such stopping behavior is studied by manipulating the control exerted by a subject over its actions with a countermanding paradigm, a test of the ability to stop a response once the go stimulus has been presented. This race between STOP and GO signals provides a powerful method to study the temporal dynamics underlying movement processing: being interruptible during an initial controlled phase before exceeding some criterion value, after which a ballistic phase inexorably leads to movement execution. A series of
experiments examines movement processing in posterior parietal cortex,
basal ganglia, and superior colliculus by determining whether neurons
carry the necessary neural signals to be directly involved in the
decision process that regulates whether and when saccades are produced.
The underlying analytical approach is based on the principle that for
neurons to influence behavior they must change their activity early
enough when a prepared movement is countermanded instead of executed. This research is currently supported by a Group Grant from the Canadian Institutes of Health Research and was previously supported by the EJLB Foundation Research Programme and an Early Researcher Award from the Ontario Ministry of Research & Innovation. Audiovisual Communication Verbal communication maybe unique to humans, but this capability evolved from predispositions that can be traced within our evolutionary past. An animal model of audiovisual communication is being developed to study the neural circuit and processes responsible for the integration of audiovisual communicative signals. This research is currently supported by an Operating Grant from the Canadian Institutes of Health Research and was initiated by a Grant from the National Institutes of Health |