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a b s t r a c t

Two long-standing questions in neuroscience concern the mechanisms underlying our abilities to make
decisions and to store goal-relevant information in memory for seconds at a time. Recent experimental
and theoretical advances suggest that NMDA receptors at intrinsic cortical synapses play an important
role in both these functions. The long NMDA time constant is suggested to support persistent mnemonic
activity bymaintaining excitatory drive after the removal of a stimulus and to enable the slow integration
of afferent information in the service of decisions. These findings have led to the hypothesis that the
local circuit mechanisms underlying decisions must also furnish persistent storage of information. We
use a local circuit cortical model of spiking neurons to test this hypothesis, controlling intrinsic drive by
scalingNMDAconductance strength. Our simulations provide further evidence that persistent storage and
decisionmaking are supported by commonmechanisms, but under biophysically realistic parameters, our
model demonstrates that the processing requirements of persistent storage and decision making may be
incompatible at the local circuit level. Parameters supporting persistent storage lead to strong dynamics
that are at odds with slow integration, whereas weaker dynamics furnish the speed–accuracy trade-off
common to psychometric data and decision theory.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The length and variability of the time needed to discriminate
visual stimuli and the susceptibility of this behaviour to errors
indicate that decisions intervene between sensory and motor
processing (see Schall, 2001, for review). The eye movement
system has been invaluable as a model of decision making and
experiments on non-human primates show that decisions can be
decoded from neural activity in several cortical regions, including
the lateral intraparietal area (LIP) of posterior parietal cortex (PPC)
(Roitman & Shadlen, 2002; Thomas & Paré, 2007) and the frontal
eye fields (FEF) (Schall & Hanes, 1993) and dorsolateral region of
pre-frontal cortex (PFC) (Hasegawa, Matsumoto, & Mikami, 2000).

Abstractmathematicalmodels have longprovidedphenomeno-
logical explanations of decision making. Sequential sampling
models assume that decision making involves an integration
process, where evidence is integrated until a threshold is reached
(see Smith & Ratcliff, 2004). Because neural processing is noisy and
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evidence may be incomplete or ambiguous, integration is slower
than the sampling rate, so decisions are based on an average of the
evidence andnot onmomentary fluctuations in processing (see Bo-
gacz, 2007). Several models have addressed the neural mecha-
nisms underlying such a process (Usher &McClelland, 2001;Wang,
2002;Wong &Wang, 2006). The underlying premise of thesemod-
els is that a discrete population of pyramidal neurons is selective
for each decision option, and that competition between these pop-
ulations is provided by a common pool of inhibitory interneurons.
Activity in each stimulus-selective population therefore comes at
the expense of the other(s), providing a natural means of selection
that scales with the number of decision options. Under constraints
with biophysical correlates, mutual inhibition instantiates a calcu-
lation of the difference between the evidence favouring each op-
tion in two-choice tasks, a process known to optimize speed and
accuracy with respect to one another with independent sequen-
tial samples (see Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006).
Consistentwith cortical processing (Douglas&Martin, 2004, 2007),
intrinsic (recurrent) activity is crucial to these models, where the
time constant of integration depends on a balance between the
passive leakage of information and the amplification of informa-
tion by recurrent activity (Usher & McClelland, 2001).

Biophysically based models predict that NMDA receptors
(NMDAR) at intrinsic synapses onto pyramidal neurons provide
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an important mechanism underlying the integration of evidence,
where their long time constant enables the slow buildup of
evidence (Wang, 2002; Wong & Wang, 2006). It is widely
believed that intrinsic synapses also provide a mechanism
for persistent mnemonic activity following the extinction of
a stimulus, though this mechanism is just one of a number
of mechanisms hypothesized to support persistent mnemonic
activity (see the Discussion). Such activity is extensively correlated
with working memory, the active retention of information for
use in cognitive tasks (Goldman-Rakic, 1995; Wang, 2001). In
this regard, NMDARs are hypothesized to provide an excitatory
plateau (Fransén & Lansner, 1995; Lisman, Fellous, & Wang,
1998) while limiting network oscillations (Durstewitz, Seamans,
& Sejnowski, 2000; Wang, 1999), a hypothesis supported by
observations that injection of NMDA blockers in PFC impairs
working memory (Aura & Riekkinen, 1999; Dudkin, Kruchinin,
& Chueva, 1997). Because persistent mnemonic activity has
been recorded in cortices correlated with perceptual decisions,
including PFC (Funahashi, Bruce, & Goldman-Rakic, 1989; Fuster,
1973), FEF (Bruce & Goldberg, 1985) and PPC (Gnadt & Andersen,
1988), it has been proposed that intrinsic excitation strong enough
to support persistent mnemonic activity is a property of decision
circuits (Wang, 2002, 2008; Wong & Wang, 2006), similar in
principle to suggestions that persistent storage (PS) capability
may be required for coordinate transformations in PPC (Salinas &
Sejnowski, 2001).

To address the hypothesis that decision making relies on local
circuit PS capability (Wang, 2002, 2008; Wong & Wang, 2006), we
model a decision-correlated circuit in LIPwith a spiking implemen-
tation (Ardid, Wang, & Compte, 2007; Compte, Brunel, Goldman-
Rakic, & Wang, 2000; Furman &Wang, 2008; Gutkin, Laing, Colby,
Chow, & Ermentrout, 2001; Ma, Beck, Latham, & Pouget, 2006)
of a local circuit model widely used in population and firing rate
simulations of cortical circuits (Douglas & Martin, 2007; Pouget,
Dayan, & Zemel, 2000;Wilson & Cowan, 1973), including visuospa-
tial maps in PFC (Camperi & Wang, 1998), PPC (Standage, Trap-
penberg, & Klein, 2005) and frontoparietal cortex (Cisek, 2006).
A spiking implementation provides synaptic resolution, enabling
the manipulation of intrinsic NMDARs. Unlike earlier models with
discrete stimulus-selective neural populations (Usher & McClel-
land, 2001; Wang, 2002), the model assumes a columnar orga-
nization where the strength of intercolumnar pyramidal interac-
tions decreases with axial distance (see Abeles, 1991; Goldman-
Rakic, 1995; White, 1989). Combined with unstructured or more
broadly tuned synapses onto inhibitory interneurons, this synaptic
profile creates centre-surround activity in which pyramidal neu-
rons support each other locally via intrinsic projections and in-
hibit each other distally via interneurons. This family of networks
is often used to model persistent mnemonic activity in visuospa-
tial working memory tasks (Camperi & Wang, 1998; Trappenberg
& Standage, 2005), where intrinsic excitation must be sufficiently
strong for a selective population to drive itself over a memory in-
terval, necessitating strong inhibition to limit the spread of ex-
citation. These constraints lead to strong intrinsic dynamics that
naturally cater to choice selection in decision making tasks, but
are potentially at odds with the slow, simultaneous buildup of
activity seen in decision-related cortices in multiple-choice tasks
(see Schall, 2001).

In simulated visuospatial tasks, we control the network’s
intrinsic drive by scaling NMDA conductance at intrinsic synapses
onto pyramidal neurons. In a simulated visuospatial working
memory task, we determine values of this parameter that support
(and do not support) PS. In a simulated two-choice visual
search task, we measure the decision making abilities of the
network for a range of values of this parameter. Our decision
making task has no memory component, so there is no a priori

requirement of local circuit PS capability for task completion.
Under parameters consistent with biophysical data, we find
that parameters supporting PS lead to intrinsic dynamics too
strong for slow integration of evidence, amplifying momentary
fluctuations and leading to hasty, inaccurate decisions. The model
is a much more accurate decision maker under parameters that
do not support PS. Indeed, the best decision making network
is far from the PS regime (Fig. 2). In this case, the network
enacts a speed–accuracy trade-off with increasing task difficulty
(eg. Palmer, Huk, & Shadlen, 2005), simulated reaction times and
their distributions are consistent with those of psychophysical
experiments, and simulated neural data are consistent with neural
recordings in LIP during visual search tasks. This finding is different
from that of earlier studies, but the mechanisms underlying
it are much the same. Intrinsic processing fosters a balance
between leakage and amplification of accumulated evidence
(Usher & McClelland, 2001) that corresponds to a given NMDAR
conductance strength (Wang, 2008). Under our parameters, the
balance that best supports the task is outside the PS regime.

Our results fit with a distributed framework in which no
single microcircuit is responsible for all aspects of a decision task,
but where different functions (e.g. integration of evidence and
choice selection) are mediated by different circuits (Beck et al.,
2008). Our results further speak to the functions of decision-
related cortical regions in distributed circuitry. For example, the
prediction that decision circuits in LIP are characterized by weak
intrinsic dynamics is consistent with reports that LIP represents
the relative importance of items in the visual field (Goldberg,
Bisley, Powell, & Gottlieb, 2006; Serences & Yantis, 2006), a
function for which categorical dynamics are not well suited. The
difference between our findings and those of earlier studies is
explained by consideration of the network’s time constant of
integration, optimization of which is parameter dependent. We
thus do not claim that PS capability cannot be a property of
local circuitsmediating decisionprocesses, but under biophysically
realistic parameters, we demonstrate the potential incompatibility
of persistent mnemonic activity and decision making in the same
local circuit at the same time.

2. Materials and methods

We simulated a decision circuit in LIP with a fully connected
recurrent network of leaky integrate-and-fire neurons (Tuckwell,
1988) with 1000 pyramidal neurons and 250 interneurons,
depicted in Fig. 1(A). Intrinsic (recurrent) activity from pyramidal
cells was mediated by AMPA and NMDA conductances and from
interneurons by GABA conductances (Fig. 1(B)). The strength
or weight of pyramidal-to-pyramidal synapses was thus scaled
by a decreasing function of spatial location (see Abeles, 1991;
Goldman-Rakic, 1995; White, 1989), added to a baseline weight
(Ardid et al., 2007; Compte et al., 2000; Tegnér, Compte, & Wang,
2002) (Fig. 1(C)). Combined with unstructured synapses between
pyramidal cells and inhibitory interneurons, this synaptic profile
creates a centre-surround network where pyramidal neurons
support each other locally via intrinsic projections and inhibit each
other distally via interneurons. In simulated visuospatial working
memory and visual discrimination tasks, stimuliwere simulated by
Poisson spike trains where spike rates were drawn from a normal
distribution and themean corresponded to the centre of a Gaussian
receptive field, depicted in Fig. 1(A) for the discrimination task.
Spike response adaptation among upstream, visually responsive
neurons was mimicked by a decaying function of input rate
(Trappenberg, Dorris, Munoz, & Klein, 2001; Wong, Huk, Shadlen,
& Wang, 2007) with a 40 ms (Thomas & Paré, 2007) response
delay (Fig. 1(D)). These selective inputs were superimposed on
non-selective Poisson input spikes that lead to background spike
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Fig. 1. (A) Fully recurrent network of pyramidal neurons (light grey with black projections) and interneurons (dark grey neuron and projections). The 4/1 ratio of pyramidal
neurons to interneurons preserves population sizes in the spiking model (1000/250). Target (T) and distractor (D) neurons are given Gaussian RFs and are outlined in black
and dark grey respectively. (B) Intrinsic AMPA (light grey) and NMDA (black) currents onto a pyramidal neuron are consistent with in vitro recordings from cortical slices
(e.g. Wang et al., 2008). Currents are shown at the peak of the connectivity structure in C and are thus mediated by the strongest intrinsic synapses in the model. GABA
currents onto the sameneuron are shown in dark grey and are also consistentwith in vitro cortical data (e.g. Galarreta &Hestrin, 1998). (C) Structured pyramidal-to-pyramidal
weightsW . Black curve shows weights to all pyramidal neurons from neuron 500. Grey curves show periodic shift-invariance ofW . (D) Mean input frequency at the centre
of the target (black) and distractor (grey) RFs during the stimulus interval. Curves are shown for the easiest level of target–distractor similarity (�NMDA = 0.75). Only the
first 300 ms is shown.

rates of 1–2 Hz among pyramidal neurons and 7–8 Hz among
interneurons (Destexhe & Paré, 1999), depending on the strength
of intrinsic NMDARs.

Each model neuron is described by

CmdV/dt = �gL(V � EL) � I,

where Cm is the membrane capacitance of the neuron, gL is the
leakage conductance, V is the membrane potential, EL is the
equilibrium potential, and I is the total input current. When V
reaches a firing threshold #V , it is reset to Vres, after which it is
unresponsive to its input for an absolute refractory period ⌧ref . For
pyramidal neurons, Cm = 0.5 nF, gL = 25 nS, EL = �70 mV,
#V = �50 mV, Vres = �60 mV and ⌧ref = 2 ms. For interneurons,
Cm = 0.2 nF, gL = 20 nS, EL = �70 mV, #V = �50 mV,
Vres = �60mV and ⌧ref = 1ms (Compte et al., 2000;Wang, 1999).

The total input current I is given by

I = IextAMPA + IAMPA + INMDA + IGABA.

For each neuron, IextAMPA is AMPAR-mediated afferent current, and
IAMPA, INMDA and IGABA are the summed AMPAR, NMDAR, and GABAR
currents from recurrent synapses. These currents are each defined
by

Isyn = G · g(V � Vsyn) · ⌘ · W · , (1)

where subscript syn refers to {AMPAext , AMPA,NMDA,GABA}. For
each synapse contributing to the current, G is the conductance
strength, g is the receptor activation, Vsyn is the synaptic reversal
potential, ⌘ captures the voltage dependence of NMDARs (set to 1

for AMPARs and GABARs and described below for NMDARs) and 
is a scale factor (set to 1 for all intrinsic synapses and described
below for extrinsic activity). The constant W distinguishes
between structured and unstructured network connections (see
below). For AMPA and NMDA synapses, Vsyn = 0 mV. For GABA
synapses, Vsyn = �70 mV. For AMPARs and GABARs, the receptor
activation g follows a step-and-decay formula dg/dt = �g/⌧g +
�(t � tf ), where � is the Dirac delta function and tf is the time
of firing of a pre-synaptic neuron. The decay constant ⌧g is given
values ⌧AMPA = 4 ms (Gonzalez-Burgos et al., 2008) and ⌧GABA =
10 ms (Salin & Prince, 1996) respectively for these synapses. For
NMDA currents, g has a slower rise and decay and is described by
dgNMDA/dt = �gNMDA/⌧NMDA + ↵NMDA · xNMDA(1 � gNMDA),

where ⌧NMDA = 100 ms (Wang, Stradtman, Wang, & Gao, 2008),
↵NMDA = 0.5 kHz controls receptor saturation, and xNMDA is defined
by
dxNMDA/dt = �xNMDA/⌧x + �(t � tf ).
Decay constant ⌧x is set to 2 ms. The voltage dependence of
NMDARs is captured by ⌘ = 1/(1 + Mg · exp(�0.062 · V )/3.57),
where Mg = 1 mM describes the extracellular Magnesium
concentration (Jahr & Stevens, 1990). Conductance strengths G at
recurrent synapses are GAMPA,p = GAMPA,i = 0.5 nS, GNMDA,p =
4.1 nS, GNMDA,i = 2.5 nS, GGABA,p = 6 nS, and GGABA,i =
5.75 nS, where subscripts p and i refer to synapses onto pyramidal
neurons and interneurons respectively. The strength of extrinsic
AMPA conductances onto pyramidal neurons and interneurons are
Gext
AMPA,p = 2.75 nS and Gext

AMPA,i = 2 nS respectively. Example
currents mediated by these synapses are shown in Fig. 1(B).
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Fig. 2. Establishing persistent storage (PS) parameters in the model. (A–D) Rasters and spike density functions (SDF, rounded to the nearest millisecond) for a simulated PS
task in which the stimulus interval (first 500 ms) was followed by a memory interval (5000 ms, no selective input) under parameters that support (A, C, �NMDA = 1) and do
not support (B, D, �NMDA = 0.8) PS. SDFs were built by convolving spike trains with a rise and decay function (1 � exp(�t/⌧r ) · exp(�t/⌧d)/(⌧ 2

d /(⌧r + ⌧d))) where t is the
time following stimulus onset, and ⌧r = 1 ms and ⌧d = 20 ms are the time constants of rise and decay respectively (Thompson et al., 1996). In rasters, pyramidal cells are
indexed from 1–1000. Interneurons are indexed from 1001–1250. The beginning (40 ms) and end (540 ms) of the stimulus interval are indicated by the vertical bars at the
top of the figure. Selective input was provided at the target only and SDFs are averaged over the target-selective population (41 neurons, see Discrimination Time). (E) Mean
population SDF (solid curve) over the final 1000 ms of the memory interval for �NMDA = {1.1, 1.0, 0.99, 0.98, 0.97, 0.96, 0.9, 0.8, 0.7, 0.6, 0.5}. For �NMDA = 1 (PS baseline)
the network supports PS. For �NMDA  0.98, the network shows no mnemonic activity. �NMDA = 0.99 is effectively the PS border. The dashed curve shows the population
spike count rate over the same interval. The two curves are barely distinguishable.

2.1. Structured pyramidal-to-pyramidal synapses

All pyramidal-to-interneuron, interneuron-to-interneuron and
interneuron-to-pyramidal and extrinsic synapses are unstruc-
tured, so in Eq. (1), W = 1 for all these cases. For pyramidal-
to-pyramidal synapses, W is a Gaussian function of the distance
between neurons in a ring. The weight Wi,j between any two
pyramidal neurons i and j is thus given by

Wi,j = � + exp(�d2/2� 2),

where � = 0.2 provides an unstructured baseline weight between
all pyramidal neurons (Ardid et al., 2007; Compte et al., 2000;
Tegnér et al., 2002), d = min(|i � j|dx, 2⇡ � |i � j|dx)
defines distance in the ring, dx = 2⇡/NE is a scale factor and
� = 0.35(20°). Pyramidal-to-pyramidal weights are depicted in
Fig. 1(C).

2.2. Background activity

Extrinsic currents IextAMPA,{p,i} mediate non-selective background
activity, simulating background firing from other brain regions
and generating background activity in the network. We simulate
the convergent activity of 1000 pre-synaptic neurons firing
independent, homogeneous Poisson spike trains at 1 Hz each with
a single homogeneous Poisson spike train at 100 Hz, where the
conductance strengthGext

AMPA,{p,i} is scaled by  = 10, trading spatial
and temporal summation (Prescott & De Koninck, 2003).

2.3. Visual discrimination task

Our discrimination task corresponds to a visual search task
with two stimuli, one of which is designated the target by virtue
of a feature contrast difference. Following a 300 ms equilibration
period (background activity only), the spike rates of the target and
distractor stimuli were drawn from a normal distribution with
mean µ corresponding to the centre of a Gaussian RF defined by
exp(�d2/2� 2

ext). Constant d is given above for structured weights
W and �ext = 0.52(30°). The target and distractor RF centres
were separated from each other by 180° in the ring network. Spike
response adaptation in upstream visually responsive neurons is
modelled by a step-and-decay function (Trappenberg et al., 2001;
Wong et al., 2007)
dµ/dt = (µ � µinit/µdiv · �µ)/⌧µ + µinit�(t � ↵µ),

where µdiv = 2 determines the asymptotic input spike rate,
⌧µ = 25 ms determines the rate of (upstream) spike response
adaptation, and ↵µ = �t ms is the onset of selective input
following the 40 ms visual response delay, prior to which µ = 0.
Constant �µ is set to 1 for the target and to �ext for the distractor,
where 0.75  �ext  0.99 determines target–distractor similarity.
As with non-selective inputs, Gext

AMPA,p is scaled by  = 10. With
an initial frequency µinit = 400 Hz, our selective inputs thus
approximate a population of 100 upstream neurons firing at an
initial rate of 40 Hz, attenuating to rates of 20 Hz and 20 ·�ext Hz at
the target and distractor neurons respectively (Chafee & Goldman-
Rakic, 1998; Paré &Wurtz, 1997), depicted in Fig. 1(D). Simulations
were run with timestep �t = 0.1 ms and the standard forward
implementation of Euler’s method, and were verified with the
standard fourth order Runge–Kutta method.
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Fig. 3. (Top)Mean spike density (100 trials) at the target and distractor neurons for each level of target–distractor similarity �ext (see legend, top right). Correct trials only. In
the non-PS network (�NMDA = 0.8, left) target and distractor activation is slower to diverge with increasing task difficulty. Mean spike densities for the PS baseline network
(�NMDA = 1, right) are similar for all task difficulties. (Bottom) Quantifying the probability of target discrimination. Weibull fits to AUROCs (see text) calculated at the target
and distractor neurons. With increasing task difficulty, curves from the non-PS network asymptote with increasing latency, trading speed for accuracy (left). All curves from
the PS baseline network asymptote with similar latency, with corresponding loss of accuracy (right).

3. Results

3.1. Establishing persistent storage parameters

We determined the PS capability of the network as a function
of the strength of intrinsic NMDARs, multiplying conductance
strength at these synapses by a factor �NMDA. Fig. 2 shows results
from a simulated visuospatial working memory task in which
the network was driven for 500 ms by selective input (stimulus
interval) followed by 5000 ms without selective input (memory
interval). Raster plots are shown on the top row and spike density
functions (SDF, see Fig. 2 caption) in themiddle row. Spike rates are
consistent with LIP data (e.g. Thomas & Paré, 2007). As shown on
the left of the figure (top two rows), for �NMDA = 1, the network
supports persistent neural activity during the memory interval
at a much lower rate than during the stimulus interval (Paré &
Wurtz, 1997). The network is thus inside the PS regime, but close
to the onset of PS dynamics, previously suggested to be optimal for
decision circuits (Wang, 2002). We refer to this configuration as PS
baseline. The network on the right does not support PS (�NMDA =
0.8), as evidenced by the cessation of stimulus-selective activation
during the memory interval.

The bottom row of the figure plots the respective firing rates for
0.5  �NMDA  1.1 over the last 1000 ms of the memory interval.
For�NMDA � 1, the network supports PS,where higher rates are due
to higher values of �NMDA. For �NMDA = 1.1 (referred to as strong
PS below), the network supports strong PS states, but beyond
this parameter value (increments of 0.1), the network develops
persistent, selective states from background noise. Consequently,
we do not consider �NMDA > 1.1. Note that the bottom row
does not show the rate of decline of activation following removal
of the stimulus; among the non-PS networks, stimulus-selective
activation drops off more slowly with higher values of �NMDA. For
�NMDA = 0.8 (above right), the drop-off in activation is very

sharp, indicating that the network is far from the PS regime. Unless
otherwise specified, we refer to this configuration as ‘the non-PS
network’ below.

3.2. Simulated visual discrimination task

We simulated a two-choice visual discrimination task by
centring extrinsic activity at two network locations for 1000 ms,
one designated the target and the other the distractor. Initial
‘visual’ responses were equal (Thomas & Paré, 2007) and the rate
of target and distractor inputs diverged to separate steady states
(Trappenberg et al., 2001; Wong et al., 2007), determining their
similarity (and thus task difficulty). Average input spike rates at
the target and distractor RF centres (henceforth the target neuron
and distractor neuron respectively) are shown in Fig. 1(D). We ran
100 trials of the two-choice task for a range of target–distractor
similarities �ext and NMDA scale factors �NMDA, recording the
spike times of each neuron in the network. Fig. 3 (top row)
shows mean activation of the target and distractor neurons on
correct trials (see Discrimination Time) for the two values of �NMDA
shown for the visuospatial working memory task in Fig. 2. For
the non-PS network, target and distractor activation is slower
to diverge and less distinguishable as input similarity increases,
consistent with reaction times and recordings from PPC during
visual discrimination tasks (Roitman & Shadlen, 2002). Regardless
of task difficulty, activation follows an invariant profile in the PS
baseline network.

3.3. Discrimination accuracy

We used signal detection theory (Green & Swets, 1966) to
determine howwell an ideal observer could discriminate between
the target and the distractor from spiking activity in the model,
estimating the separation of the distributions of target and
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Fig. 4. Determining discrimination time in the two-choice task. A correct trial (A, C, E) and error trial (B, D, F) where �NMDA = 0.8 and �ext = 0.97. (A, B) In raster plots,
pyramidal neurons are indexed 1–1000. Interneurons are indexed 1001–1250. Target (T) and distractor (D) neurons are numbered 250 and 750 respectively. Stimulus
interval begins at 40 ms. (C, D) Mean spike densities for target (black) and distractor (grey) populations (41 neurons each). Horizontal black bars depict threshold method
for checking discrimination time (see text). (E, F) AUROC and Weibull fits corresponding to spike densities above. Dotted black bars indicate discrimination time, when the
Weibull function reaches 0.75 on correct trials and 0.25 on error trials.

distractor activity at successive 1 ms intervals. To this end, we
calculated receiver operating characteristic curves (ROC) from the
mean activation of the target and distractor neurons over the 100
trials. The area under the ROC (AUROC) quantifies the separation of
their distributions (see Thompson, Hanes, Bichot, & Schall, 1996).
We quantified the probability of neuronal discrimination by a least
squares fit of the AUROCs to a Weibull function

w(t) = � � (� � �) · exp(�(t/↵)�) (2)
where t is the time after stimulus onset, ↵ is the time at which
the function reaches 64% of its maximum, � is the slope, and �
and � are the upper and lower limits of the function respectively.
Discrimination magnitude (accuracy) was the upper limit of the
function.

Fig. 3 (bottom row) shows w for all levels of target–distractor
similarity for the PS baseline network and for the best-performing
non-PS network. Our ideal observer analysis shows that both
networks quickly discriminate the target from the distractor on
the easiest task, but as the task is made harder, only the non-
PS network discriminates more slowly, reaching a high level of
accuracy for all but the hardest task. The non-PS network thus
trades speed for accuracywith increasing task difficulty, consistent
with neural and psychometric data from subjects performing
visual discrimination tasks (eg. Palmer et al., 2005; Roitman &
Shadlen, 2002). In contrast, the PS baseline network cannot enact
this trade-off, evidenced by the early asymptotes of these curves
at low values. The strong PS network performs even worse (not
shown).

3.4. Discrimination time

We quantified the timecourse of neuronal discrimination by
calculating AUROCs for a population of target and distractor-
selective neurons during each trial. The population p = 41

included the target neuron, the distractor neuron, and an
additional 20 neurons either side of these RF centres. The fitting
procedure on each trial was thus equivalent to that described
above for determining accuracy across all trials, but averaged over
p neurons instead of 100 trials. Additionally, because either the
target or distractor population could dominate the network on
any given trial (correct and error trials respectively), the AUROCs
could be correspondingly fit with increasing or decreasingWeibull
functions w. On error trials (decreasing function), ↵ in Eq. (2)
refers to the time at which w reached 64% of 1 �min(w),
and � and � are the lower and upper limits respectively. The
time at which w reached 0.75 was considered the discrimination
time (Thompson et al., 1996) (0.25 on error trials). We averaged
discrimination times (DT) over all trials to determine the speed
of decision making under each combination of task difficulty and
strength of recurrent NMDARs, depicted in Fig. 4. Trials on which
w reached neither 0.75 nor 0.25 were discarded. For difficult tasks
with weak recurrent NMDARs (�ext � 0.97 & �NMDA < 0.7)
there were substantial numbers of discarded trials with a 1000
ms stimulus interval (see Fig. 6 caption), but results under these
parameter values are informative about the discrimination abilities
of the network because an ideal observer analysis does not require
categorical choice. Quantifying DT on a trial-by-trial basis allows
direct comparison with psychometric data, but if there is little to
discriminate between target and distractor stimuli, it is reasonable
not to choose at all, as in non-forced choice tasks. This important
decision-theoretic issue is considered in the Discussion.

We compared the above method for determining the time-
course of discrimination with an alternative method, similar to
that of Wang (2002), comparing the mean activity of the target
and distractor populations to a threshold frequency. Under this
method, DT was considered to be the time at which the target
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Fig. 5. Cumulative distribution of discrimination times for the best-performing
non-PS network (�NMDA = 0.8, top) and the PS baseline network (�NMDA = 1,
bottom) for all levels of target–distractor similarity �ext . Discrimination times are
broader with longer tails with increasing task difficulty for the non-PS network, but
are approximately constant for the PS network.

activity (distractor activity for error trials) exceeded this thresh-
old, with the additional constraints that (1) one activation func-
tion remain above threshold for 100 ms and (2) the other con-
currently remain below threshold for 100 ms. These additional
constraints served to distinguish the initial ‘visual’ response from
the subsequent, decision-related activity. Results under the two
methods were similar for thresholds between approximately 20
and 60 Hz. We do not systematically investigate the similarities
between the twomethods here, thoughwe note that their use cap-
tures a subtle distinction in the context of distributed processing.
ROC analysis implements an ideal observer of the network, akin
to a downstream circuit making decisions based on the network’s
activity (e.g. the superior colliculus reading out LIP activity). A neu-
ral threshold enables the network to make its own decisions, i.e.
without an observer of its activity. However, in a model with com-
petitive interactions between selective populations, the reaching
of the threshold by one population entails a difference between its
activation and that of the other, the same criterion used by ROC
analysis to discriminate between the two populations. It is thus not
surprising that the twomethods yield similar results. See Standage,
You,Wang, andDorris (in press) for a dynamic systems perspective
on ROC with a network from the same family as this one.

As expected due to the longer latency of maximum discrimina-
tion as a function of task difficulty (Fig. 3, bottom left), mean DTs
for the best-performing network increased with target–distractor
similarity, rising from 109ms to 283ms as �ext was increased from
0.75 to 0.99. These DTs not only indicate a speed–accuracy trade-
off on a trial-by-trial basis, but are consistent with reaction times
in visual search tasks (Thomas & Paré, 2007). In contrast, mean DTs
for the PS baseline network showed a very slight increase from 97
ms to 107 ms as task difficulty was increased.

Fig. 5 shows cumulative distributions of DTs for the non-PS
network and the PS baseline network. Not only does mean DT
increase with task difficulty in the non-PS network (62% from

the easiest to hardest task), but so does the standard deviation
(84%), consistent with greater variability in reaction times with
increasing task difficulty in monkeys performing a visual search
task (Cohen et al., 2007). Furthermore, DT distributions show an
increasingly long tail with increasing task difficulty (0.75  �ext <
0.99), consistent with typical human reaction times in decision
making tasks (see Smith&Ratcliff, 2004) andmathematicalmodels
known to be optimal for two-choice tasks (Bogacz et al., 2006). Not
only are mean DTs approximately constant across task difficulty
in the PS baseline network (increasing by 9% from the easiest to
hardest task), but their standard deviations decrease by 18%.

3.5. Target discrimination with PS and non-PS networks

Fig. 6 shows mean discrimination accuracy and time as
functions of target–distractor similarity for a range of values of
�NMDA. The top figure shows results for accuracy. The curves cluster
for the easiest and most difficult tasks, though values of �NMDA
leading to the strongest and weakest recurrent dynamics furnish
the least accurate networks. For task difficulties between these
extremes, accuracy steadily improves as the strength of recurrent
NMDARs is reduced from �NMDA = 1.1 to �NMDA = 0.8. This effect
bottoms out at �NMDA = 0.7 and network accuracy decreases for
�NMDA = 0.6, comparable to (though slightly better than) the PS
baseline network. At �NMDA = 0.5, the network is less accurate
than baseline, performing comparably to the strong PS network.

The bottom figure shows results for DT. The curves cluster
for the easiest level of target–distractor similarity, much like the
accuracy curves above. In general, as the task is made harder, all
networks except the strong PS network show an increase in DT,
though this effect is slight for PS baseline (an increase of ⇠10%
from the easiest to the hardest task). This increase in DT with
task difficulty is more pronounced as �NMDA is reduced, though
for �NMDA  0.6, the network makes too few decisions to be
useful as a categorical decisionmaker. Indeed, these twoparameter
values yield no decisions at all for the hardest task (see Fig. 6
caption). Such a non-committal description of ambiguous evidence
could be valuable to a downstream integrator reading the output
of more than one circuit (see the Discussion). Note that longer
DTs coincide with lower accuracy for �NMDA  0.6 because the
network is dominated by leakage of information (see Discussion
and Supplementary Material).

We checked that decision making followed a performance
gradient near the onset of PS dynamics by running simulations
with �NMDA = {0.99, 0.97, 0.95, 0.93}. These parameter values
lead to results for accuracy and DT that transitioned smoothly
between PS baseline and �NMDA = 0.9, shown by the thin
solid curves in Fig. 6 for �NMDA = 0.95. Notably, for �NMDA =
0.99, network performance was nearly indistinguishable from PS
baseline (not shown).

3.6. Robustness of the results

Our study is based on earlier work in which the long time
constant of NMDARs at intrinsic synapses onto pyramidal neurons
was hypothesized to support persistent mnemonic activity and
the integration of evidence in decision processing (Wang, 2002,
2008; Wong & Wang, 2006). We followed these authors in using
anNMDAR time constant of ⌧NMDA = 100ms, butmeasurements of
⌧NMDA differ according to experimental methods, receptor subtype
and function (see Cull-Candy, Brickley, & Farrant, 2001; Cull-
Candy & Leszkiewicz, 2004). The value of ⌧NMDA used here and in
earlier work is consistent with the upper end of measurements
for intrinsic cortical processing, so we also ran simulations with
⌧NMDA = 50ms, consistent with measurements at the lower end of
the data (Kumar &Huguenard, 2003;Wang et al., 2008). Under this
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Fig. 6. Accuracy (top) and speed (bottom) of target discrimination in the model.
Dotted curves correspond to PS networks, where open and closed circles show PS
baseline (�NMDA = 1) and strong PS (�NMDA = 1.1) respectively. Solid curves
correspond to non-PS networks, where lighter curves correspond to lower values of
�NMDA (0.5  �NMDA  0.95, see colour legend). Results from the best-performing
network (�NMDA = 0.8) are plotted with open circles. The thin black curves (one
in each figure) correspond to �NMDA = 0.95. The bottom figure shows that the
weakest networks do not make decisions on the hardest tasks with a stimulus
interval of 1 s anddiscrimination criterion of 0.75 (see Results, Discrimination time).
For �NMDA = 0.5, the network makes decisions on 35% of trials for �ext = 0.9, 8% for
�ext = 0.93 and 0% for �ext � 0.95. For �NMDA = 0.6, the network makes decisions
on 85% of trials for �ext = 0.93, 44% for �ext = 0.95, 7% for �ext = 0.97 and 0%
for �ext = 0.99. For �NMDA = 0.7, the network makes decisions on 75% of trials for
�ext = 0.97 and 44% for �ext = 0.99. All other combinations of �NMDA and �ext yield
decisions on more than 90% of trials.

parameter value, the PS network corresponded to �NMDA = 1.2,
while �NMDA = 0.8 was far outside the PS regime. The shorter
NMDAR time constant did not qualitatively effect our results (Fig. 7,
solid curves).

To determine if the results depend on the details of selective
input, we ran 100 trials with the PS baseline network and the non-
PS network, where the initial input rate at the target RF centre was
reduced from 400 to 200 Hz — simulating 100 upstream visually
responsive neurons at 20 Hz instead of 40 Hz. We also ran 100
trials with a step input (no decay) at 100 Hz. These alternate input
parameters did not qualitatively affect the results (not shown). As
long as the inputs were strong enough to furnish a transition from
extrinsic to intrinsic processing (Douglas & Martin, 2004, 2007;
Wilson & Cowan, 1973), results were qualitatively invariant.

We also examined the signal-to-noise ratio (SNR) of the
selective input. This ratio is determined by the relative rates of
background and selective input spike trains and the spatial and
temporal profiles of selective input. At the centre of the target RF,
the selective input SNR was 4 in the simulations above, decaying
to 2 with a time constant of 25ms (see Methods). This ratio is
within range of neuronal responses in LIP (Paré & Wurtz, 2001),
but is two orders of magnitude higher than in earlier work in
which PS capability was advantageous in a network model of a
decision circuit (Wang, 2002). This difference remains when the

Fig. 7. Accuracy (top) and speed (bottom) of target discrimination under
alternative parameters. Persistent storage (PS) capability impaired decisionmaking
in the network when simulations were run with a shorter NMDA time constant
(⌧NMDA = 50 ms, solid curves) and when the signal-to-noise ratio of selective
inputs and the strength of synaptic conductances were decreased (dotted curves,
see Robustness of the Results). Black and grey curves correspond to PS and non-PS
networks respectively.

SNR is integrated over the RFs (Gaussian vs. square) and temporal
input profiles (step-and-decay vs. step only) used in each study,
normalized for network size and trial length. Synaptic conductance
strength also differed markedly (one order of magnitude greater
here), so we reduced both these differences to further test the
robustness of our findings. All synaptic conductance strengths
were divided by 2, the background rate was multiplied by 2
and selective rates were multiplied by 3/4. We ran 100 trials
across all task difficulties for PS baseline and the non-PS network
and we confirmed that these new configurations remained inside
and outside the PS regime respectively. These simulations further
demonstrated that the specific values of our original parameters
are not crucial to our findings. Accuracy was very similar to Fig. 6
for both configurations. DTs were longer than in Fig. 6, but were
well within range of DTs in visual search tasks (Fig. 7, dotted
curves). These simulations do not exhaust the parameter variations
that may affect our results, but they address major differences
between our model and earlier modelling work where results
differed from ours (Wang, 2002; Wong & Wang, 2006). Further
parameter dependence is described in the Discussion.

4. Discussion

We have interpolated between strong and weak dynamics in
a spiking network model of a decision circuit in LIP, investigating
the hypothesized dependence of decision making on local circuit
PS capability (Wang, 2002, 2008; Wong & Wang, 2006). Building
on earlier studies demonstrating the potential importance of
intrinsic NMDARs to persistent mnemonic activity (Compte et al.,
2000; Durstewitz et al., 2000; Fransén & Lansner, 1995; Lisman
et al., 1998; Tegnér et al., 2002; Wang, 1999) and decision
making (Wang, 2002; Wong & Wang, 2006), we systematically
controlled both these functions by manipulating the strength of
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NMDA conductance at intrinsic synapses onto pyramidal neurons.
We controlled task difficulty by manipulating target–distractor
similarity in a simulated visual search task, finding that parameters
that support PS entail poor decision making. Non-PS parameters
(far from the PS regime, see Fig. 2) enable more effective
integration of decision options for a broad range of task difficulties,
yielding signature characteristics of reaction timedistributions and
reproducing the speed–accuracy trade-off predicted by decision
theory (Ratcliff & Smith, 2004; Smith & Ratcliff, 2004) and
shown by psychometric data from visual discrimination tasks
(eg. Churchland, Kiani, & Shadlen, 2008; Palmer et al., 2005;
Roitman & Shadlen, 2002).

While this finding is different from those of earlier studies,
the principle mechanisms at play are not. The long NMDA
time constant at intrinsic synapses allows the slow integration
of decision options, instantiating the accumulators of classic
sequential sampling models (Ratcliff & Smith, 2004; Smith
& Ratcliff, 2004). A common pool of inhibitory interneurons
among stimulus-selective pyramidal neurons effectively creates a
diffusion process (Bogacz, 2007; Usher &McClelland, 2001), where
evidence for one option accumulates at the expense of the other.
If intrinsic NMDARs are too strong, however, recurrent dynamics
dominate the network’s input, amplifying noise and eliminating
the advantage of slow evidential buildup. See Wong and Wang
(2006) for an analysis of these dynamics in a simplified model. In
the model used here, recurrent dynamics strong enough to furnish
persistent mnemonic activity are too strong for slow integration
under parameters determined by experimental data (seeMaterials
and Methods). In this respect, the difference between earlier
findings and ours is the onset of this ‘too strong’ regime.

There are a number of differences between our simulations and
those of earlier studies (Wang, 2002; Wong & Wang, 2006) that
may contribute to the difference in network dynamics. A difference
of an order of magnitude in intrinsic synaptic conductance
strength and a difference of two orders of magnitude in selective
input SNR are described above. Additionally, different network
architectures were used to simulate tasks where reaction times
occur on different timescales and spike rates differ markedly
in LIP (visual search vs. random dot motion tasks). Ultimately,
the decision making ability of a recurrent network depends on
its time constant of integration, reflecting a balance between
the leakage and amplification of accumulated input (Usher &
McClelland, 2001). This balance has been expressed in terms of
the strength and time constant of intrinsic NMDARs (Wang, 2008).
As such, there is an optimal NMDAR conductance strength above
and below which the network is dominated by amplification
and leakage respectively (see the Supplementary Material). The
more the conductance exceeds the optimum, the more quickly
activation is amplified, leading to earlier choice selection (thus
preventing further integration). The more the conductance falls
short of the optimum, the more quickly activation reaches a level
at which it leaks as fast as it accumulates (also preventing further
integration). The optimum in our model is furnished by �NMDA ⇡
0.8 (Fig. 6), but this value depends on other model parameters,
such as the relative strength of excitatory and inhibitory synaptic
conductance, the spatial extent of intrinsic interactions governing
tuning curves, and the level of background noise in the network.
We thus do not claim that our results are general. Indeed, outside
the PS regime, the model cannot make decisions if the stimuli
offset before discrimination of the target or distractor. We have,
however, clearly shown that local circuit PS capability is not a
general requirement of biophysically based models of decision
circuits. Decision-theoretic analyses have identified biophysical
parameters under which models with discrete stimulus-selective
populations are equivalent to drift diffusion models in two-choice
tasks (Bogacz et al., 2006). An extension of these analyses to the
spatial continuum of interactions in centre-surroundmodels (here
and e.g. Beck et al., 2008; Furman & Wang, 2008) is an important
next step.

4.1. Processing requirements of a salience map

The incompatibility between the processing requirements of
decision making and persistent storage in our PPC model is
consistent with reports that LIP represents the relative importance
(salience, priority) of items in the visual field (Goldberg et al., 2006;
Serences & Yantis, 2006). Our model belongs to a family of cortical
models (Wilson & Cowan, 1973) in which PS capability entails
winner-take-all dynamics in the limit of infinite time (Amari,
1977). The model can therefore support a single active region
following stimulus offset, but the time over which the dynamics
converge is parameter dependent and potentially within the time
constraints of many cognitive tasks (Trappenberg & Standage,
2005). The winner-take-all constraint does not necessarily apply
during a stimulus interval, but nonetheless, the strong recurrent
dynamics of PS circuits are potentially ill suited to multiple
stimulus-driven representations; strong inputs are required to
dominate the network’s recurrent dynamics, negating the role
of intrinsic circuitry. As such, the dynamics of PS networks may
be better suited to the representation of one item at a time.
Under non-PS parameters, mutual inhibition between regions of
the network facilitates competition between stimulus-selective
populations, but the recurrent dynamics are weaker than for
PS parameters, more easily permitting multiple items to be
simultaneously represented, scaled in proportion to the strength
of their inputs. In effect, weaker dynamics allow the ‘push–pull’ of
a diffusion process without imposing categorical choice and allow
slow transitions between the respective populations dominating
the network over time. Both these features would support the
representation of salience in LIP. This prediction is consistent with
the results of Standage et al. (2005), who found that under non-PS
parameters, a population ratemodel of PPC could explain divergent
experimental results on the distribution of visuospatial attention
if driven by persistent mnemonic inputs (putatively from PFC).
Gradual transitions in the non-PS network can be seen in Fig. 4.

While this class of model is commonly used to simulate
visuospatial working memory tasks (e.g. Camperi & Wang, 1998;
Compte et al., 2000) due to its support for the spatially periodic
configuration of items in many such tasks (e.g. Chafee & Goldman-
Rakic, 1998; Funahashi et al., 1989) and for its persistent storage
regime, fast winner-take-all dynamics during a memory interval
conflict with well-established multi-item capacity constraints of
workingmemory (Cowan, 2001; Luck & Vogel, 1997;Miller, 1956).
Our network (in the PS regime) can therefore represent each item
of the periodic array, but it can only support one such item over
a memory interval. The model can be adapted to support multi-
item working memory by structuring the connectivity between
pyramidal neurons and inhibitory interneurons (Edin et al., 2009;
Macoveanu, Klingberg, & Tegnér, 2006), effectively partitioning
the network into functionally separate modules. Mechanisms
proposed for the stabilization of persistent mnemonic activity
have a similar effect (Trappenberg, 2003), but they do so at
the expense of the competitive dynamics required of decision
circuitry (Trappenberg& Standage, 2005).Wedonot expect a given
local circuit to account for the full capacity of working memory,
but rather, we envision interactions between such circuits. For
example, if one circuit were to support the representation of the
items in a visual array, persistent storage could be provided by
coupled circuits, perhaps one per item. If so, interference between
such ‘caching’ networks might account for working memory
capacity constraints. Further work is required to address such
possibilities.
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4.2. Other mechanisms hypothesized to support persistent mnemonic
activity

Earlier studies proposing that persistent storage capability
is a requirement of local circuit decision making focused on
intrinsic (recurrent) network processing (Wang, 2002, 2008;
Wong & Wang, 2006). Our model addresses this hypothesis
and therefore continues in this vein, but recurrent synaptic
activity is just one mechanism proposed to underlie persistent
storage. Othermechanisms include intracellular calcium dynamics
(Fransén, 2005; Fransén, Babak, Egorov, Hasselmo, & Alonso,
2006; Winograd, Destexhe, & Sanchez-Vives, 2008); feedforward
network oscillations (Lisman & Idiart, 1995); and inter-cortical
and cortico-subcortical interactions (see Constantinidis & Wang,
2004; Wang, 2001). While our model is capable of encoding a
continuum of feature values such as spatial location, persistent
activity encoding these values over a delay period is limited to a
single frequency for a given value of NMDAR conductance strength
(Fig. 2). Without some form of modulation, the model is therefore
unable to simulate graded persistent activity. Such activity has
been recorded in cortex during working memory tasks (Barak,
Tsodkys, & Romo, 2010; Romo, Brody, Hernandez, & Lemus, 1999)
and has been reproduced in a networkmodel that makes decisions
in a two-interval discrimination task (Machens, Romo, & Brody,
2005). Similar line attractor dynamics have also been used to
model the memory of eye position in the brain stem (Seung, 1996,
1998). It is worth noting that stable persistent activity is generally
regarded as a minority case among forms of delay period activity
(Durstewitz & Seamans, 2006). More commonly, up and down-
ramping activity is seen during these intervals, hypothesized to
support prospective and retrospective coding respectively (see
Brody, Romo, & Kepecs, 2003) as well as the encoding of temporal
intervals (see Durstewitz & Seamans, 2006). Recently, ramping
activity has been proposed to modulate local circuit dynamics
during decisions, driving a transition from outside to inside the PS
regime, where the rate of transition governs the speed–accuracy
trade-off (Standage et al., in press).

4.3. Local and distributed processing

We have presented our findings in the context of sequential
sampling models, where in the visuospatial domain, a single
decision circuit integrates evidence for spatial locations until one
representation exceeds a threshold level of activity, leading to an
eye movement. This role of eye movement decision maker has
been attributed to several cortical regions, including PPC (Roitman
& Shadlen, 2002) and FEF (Hanes & Schall, 1996), as well as to
the mid-brain superior colliculus (Paré & Hanes, 2003). We have
further emphasized the decision making abilities of our model
under parameters that either do or do not support PS, but it
may not be necessary to draw categorical distinctions between
PS and non-PS networks in the domain of decision making, nor
between the physiological properties of cortical regions correlated
with eye movement decisions (Chafee & Goldman-Rakic, 1998).
By manipulating the strength of intrinsic NMDARs, we show a
gradient of network dynamics and consequent speed–accuracy
trade-offs (Fig. 6). The PS border sits on this gradient, but may
be epiphenomenal in this context. In a framework of distributed
decisionmaking, a range of computational properties are conferred
along the gradient, including PS. At one extreme, the strongest
dynamics yield PS states robust to distractor stimuli, whereas
somewhat weaker dynamics (eg. PS baseline) yield PS states more
readily subject to interference (Compte et al., 2000). Depending
on task demands, networks with both these properties would
provide useful input to other brain regions directly involved in eye
movement production, such as FEF and SC. At the other extreme

are non-committal noise filters with dynamics too weak to make
categorical decisions in difficult tasks. Such slow, conservative
‘advice’ would also be useful downstream, potentially balancing
any errors frommore decisive circuits. In ourmodel, the behaviour
of sequential samplingmodels is furnished by parameters between
these extremes (0.7  �NMDA  0.9) where the speed–accuracy
trade-off resembles experimental data (eg. Palmer et al., 2005).
Clearly, networks in this range would be useful to downstream
decision-related structures.

These results are consistent with a widely held view of eye
movement decisions where no single circuit is responsible for
integrating sensory evidence or making decisions (Schall, 2001).
We posit that networks in cortical regions such as PFC, FEF and
PPC, frequently correlated with integration of decision options,
may play different roles in integrating these options by virtue
of the strength of their dynamics. For example, the winner-take-
all dynamics of PS networks would appear ideal for caching
decisions and providing categorical bias to circuits involved
in sensory processing, consistent with the biased competition
theory of attention (Desimone & Duncan, 1995). As discussed
above, weaker dynamics may play a complementary role, more
readily allowing multiple items to be simultaneously considered
by downstream decision-related structures, consistent with the
concept of a salience map (Koch & Ullman, 1985; Treisman
& Gelade, 1980). There is, of course, the possibility that the
dynamics of decision circuits are modulated by task demands.
For example, the same circuit could mediate PS and a salience
map by modulation of intrinsic NMDARs, consistent with reports
of increased dopaminergic activity during working memory
tasks and dopamine enhancement of NMDA conductance in PFC
(see Durstewitz et al., 2000).

Finally, earlier proposals that decision circuits should support
PS (Salinas & Sejnowski, 2001; Wang, 2002, 2008; Wong & Wang,
2006) may have been influenced by the memory component
of delayed response tasks; in single-circuit models in which
persistent mnemonic activity and decision making are supported
by the same mechanism, PS capability is required a priori to
simulate these tasks. Similarly, PS capability guarantees categorical
choice in single-circuit simulations of delayed response tasks, even
in the absence of information to guide that choice (Wang, 2002).
Given the general acknowledgement that persistent mnemonic
activity may be supported by inter-circuit mechanisms in addition
to intra-circuit ones (Chafee & Goldman-Rakic, 1998, 2000), this
possibility highlights the need for coupled circuit models to guide
further experiments. For instance, if LIP is not a PS network per
se, then persistent activity in this cortical area must either be
driven by activity somewhere else, such as PFC (see Constantinidis
& Wang, 2004), or distinct parietal networks including LIP may
be differentiated by their dynamics, as demonstrated by our
simulations. Frontoparietal connectivity and the contributions of
PFC and PPC circuits to working memory processing are receiving
considerable attention (Babiloni et al., 2004; Chafee & Goldman-
Rakic, 2000; curtis, Rao, & D’Esposito, 2004; Edin, Klingberg,
Stodberg, & Tegnér, 2007; McNab & Klingberg, 2008). Similar
attention is required in the domain of decision making.

If decision making relies on NMDARs for integration of evi-
dence, it should be possible to interfere with decision making by
pharmacological manipulation of NMDARs, as shown previously
for persistent mnemonic activity and working memory more gen-
erally (Aura & Riekkinen, 1999; Dudkin et al., 1997). Recent exper-
imental works supports this hypothesis, where the performance of
monkeys in a visual discrimination task improved with low doses
of the NMDA antagonist Ketamine, before deteriorating at higher
doses (Shen, Kalwarowsky, Clarence, Brunamonti, & Paré, 2010).
These findings are consistent with our simulations of PPC, where
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for a range of values of intrinsic NMDAR strength, network perfor-
mance improved before deteriorating at lower values (Fig. 6). Fur-
ther experiments are required to constrain pharmacological im-
pairment of NMDA to cortical regions such PFC and PPC during de-
cision making tasks.
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