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The storage limitations of visual working memory have
been the subject of intense research interest for several
decades, but few studies have systematically
investigated the dependence of these limitations on
memory load that exceeds our retention abilities. Under
this real-world scenario, performance typically declines
beyond a critical load among low-performing subjects, a
phenomenon known as working memory overload. We
used a frontoparietal cortical model to test the
hypothesis that high-performing subjects select a
manageable number of items for storage, thereby
avoiding overload. The model accounts for behavioral
and electrophysiological data from high-performing
subjects in a parameter regime where competitive
encoding in its prefrontal network selects items for
storage, interareal projections sustain their
representations after stimulus offset, and weak
dynamics in its parietal network limit their mutual
interference. Violation of these principles accounts for
these data among low-performing subjects, implying
that poor visual working memory performance reflects
poor control over frontoparietal circuitry, making
testable predictions for experiments.

Introduction

The transient retention and manipulation of infor-
mation is central to cognition and is known as working
memory. The modular nature of working memory has
long been recognized (see Baddeley, 2012), with visual
working memory (WM) receiving considerable atten-
tion for several decades. Much of this research has

focused on the storage limitations of WM, which have
been described in terms of the number of stored items
and the precision of reports about them (see Luck &
Vogel, 2013; Ma, Husain, & Bays, 2014). A large body
of work provides evidence for a severe limit on the
number of items humans can store in WM, typically
three of four memoranda among healthy young adults
(see Vogel & Awh, 2008; Luck & Vogel, 2013). This
number is often referred to as WM capacity (though see
Brady, Konkle, & Alvarez, 2011, for a broader
definition of this term) and is a reliable predictor of
cognitive ability more generally (see Unsworth, Fuku-
da, Awh, & Vogel, 2014). Thus, understanding its
neural basis is widely regarded as a fundamental goal of
cognitive neuroscience.

In the laboratory, the storage limitations of WM are
estimated by varying the number of items for retention
over a memory delay (WM load), but little emphasis
has been given to the dependence of storage limitations
on load that exceeds our retention abilities. This real-
world scenario has long been of concern to instruc-
tional designers (Sweller, 1988; Merrienböer & Sweller,
2005), who consider the avoidance of overload a
fundamental principle of effective design. Consistent
with this concern, recent WM studies have shown a
decrease in WM capacity beyond a critical load (Chee
& Chuah, 2007; Xu, 2007; Cusack, Lehmann, Velds-
man, & Mitchell, 2009; Linke, Vicente-Grabovetsky,
Mitchell, & Cusack, 2011; Matsuyoshi, Osaka, &
Osaka, 2014; Fukuda, Woodman, & Vogel, 2015),
referred to as WM overload (Matsuyoshi et al., 2014).
To the best of our knowledge, overload has not been
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reported in terms of WM precision and we limit our
focus to the available data.

It is widely believed that WM storage is supported
by ‘‘attractor states’’ in neocortex, where regenerative
excitation sustains neural firing after stimulus offset,
kept in check by feedback inhibition (see X.-J. Wang,
2001). In models of this kind, overload is a consequence
of the competition imposed by inhibition (Edin et al.,
2009), but not all subjects show overload (e.g., Fukuda,
Woodman, & Vogel, 2015) and among those who do,
overload is not typically as pronounced as in these
models (e.g., Wei, Wang, & Wang, 2012, Results
section; Competitive encoding in the PPC-only model
alleviates overload, but conflicts with experimental data
here). The occurrence of overload in attractor models,
however, assumes that all items in a stimulus array are
encoded for storage. Thus, a viable strategy for
managing overload is to limit the number of encoded
items (Cusack et al., 2009). We hypothesize that this
selection process is implemented by strong competitive
dynamics during stimulus encoding.

To test our hypothesis, we simulated a multiple-item
WM task with biophysical models of posterior parietal
cortex (PPC) and lateral prefrontal cortex (PFC), both
of which are extensively correlated with WM (see
Curtis, 2006; Funahashi, 2013). PPC is hypothesized to
be the hub of distributed WM storage (Palva, Monto,
Kulashekhar, & Palva, 2010; Christophel, Hebart, &
Haynes, 2012; Salazar, Dotson, Bressler, & Gray, 2012)
and is well characterized by neural data from visual
tasks (see Goldberg, Bisley, Powell, & Gottlieb, 2006;
Serences & Yantis, 2006), so we first sought to
determine whether competitive encoding in a local-
circuit PPC model could alleviate overload in a manner
consistent with behavioral data from high-performing
WM subjects, and with neural data from visual tasks.
We reasoned that any inconsistencies between the
model and these data would point to the limitations of
single-circuit attractor models of WM storage, to the
computational requirements of distributed storage, and
by extension, to the role of PPC in distributed storage.
Next, we did the same thing with a hierarchical model
of PPC and PFC, reasoning that the values of
biophysical parameters required to account for the data
would identify specific mechanisms and principles for
the implementation of distributed storage. If so, then
violation of these principles should account for
behavioral data from low-performing subjects. Thus,
we evaluated our hierarchical model for its ability to
account for capacity and overload among subject
groups distinguished according to these measures.
Finally, we sought to make predictions to test our
hypothesis experimentally, approximating electroen-
cephalogram (EEG) recordings over PPC and PFC. We
reasoned that if this approximation could account for
the different EEG profiles of high- and low-performing

subject groups during the storage of memoranda
(Fukuda, Woodman, & Vogel, 2015), then its profile
during stimulus encoding would be a testable predic-
tion for our hypothesis.

Methods

Our local-circuit PPC model (the PPC-only model,
Figure 1A) is a network of simulated pyramidal
neurons and inhibitory interneurons, connected by
AMPA, NMDA, and GABA receptor conductance
synapses (AMPAR, NMDAR, and GABAR). Our
hierarchical model (the PPC-PFC model; Figure 1D) is
comprised of two such networks, bidirectionally
connected. In both models, intrinsic synaptic connec-
tivity within and between classes of neuron was
structured according to in vitro data, as was the
connectivity between networks in the PPC-PFC model.
Our chosen parameters and their values are justified
below in Parameter values. Note that the synaptic
resolution of the models allowed us to approximate
EEG signals over PPC and PFC (Results section An
EEG signature for hierarchical recruitment of compe-
tition during stimulus encoding).

We ran simulations of a visuospatial WM task with
both models, where the number of items for retention
ranged from one to eight. On each trial of the task, a
stimulus interval was preceded by a pretrial interval
and followed by a delay of 1 s. In both models, the
items were provided to the PPC network during the
stimulus interval and their accurate retention (or
otherwise) was determined from its activity at the end
of the delay (Methods sections, Stimulated working
memory task and Determining working memory
performance).

The network model

Each local circuit is a fully connected network of
leaky integrate-and-fire neurons (Tuckwell, 1988),
comprised of Np ¼ 400 simulated pyramidal neurons
and Ni¼ 100 fast-spiking inhibitory interneurons. Each
model neuron is described by

Cfp;igm

dV

dt
¼ �gfp;igL ðV� E

fp;ig
L Þ � I; ð1Þ

where Cm is the membrane capacitance of the neuron,
gL is the leakage conductance, V is the membrane
potential, EL is the equilibrium potential, and I is the
total input current. When V reaches a threshold #v, it is
reset to Vres, after which it is unresponsive to its input
for an absolute refractory period of sref. Here and
below, superscripts p and i refer to pyramidal neurons
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and interneurons respectively, indicating that parame-
ter values are assigned separately to each class of
neuron.

The total input current at each neuron is given by

I ¼ Isel þ Irec þ Ihier þ Iback; ð2Þ
where Isel is stimulus-selective synaptic current (set to 0
for all neurons in the PFC network and for interneu-
rons in the PPC network), Irec is recurrent (intrinsic)
synaptic current, Ihier is hierarchical (interareal) syn-
aptic current projected to the PPC network from the
PFC network and vice versa (set to 0 in single-circuit
simulations), and Iback is background current. Of these
currents, Isel, Irec, and Ihier are comprised of synaptic
currents, and Iback is comprised of synaptic current and
injected current. Synaptic currents driven by pyramidal
neuron spiking are mediated by simulated AMPA
receptor (AMPAR) and/or NMDA receptor
(NMDAR) conductances, and synaptic currents driven
by interneuron spiking are mediated by simulated
GABA receptor (GABAR) conductances. For AM-
PAR and GABAR currents, synaptic activation (the
proportion of open channels) is defined by

dgaAMPA

dt
¼ � gaAMPA

sfp;igAMPA

þ dðt� tf Þ

dgaGABA
dt

¼ � gaGABA

sfp;igGABA

þ dðt� tf Þ;
ð3Þ

where sAMPA and sGABA are the time constants of
AMPAR and GABAR deactivation respectively, d is
the Dirac delta function, tf is the time of firing of a
presynaptic neuron, and superscript a indicates that
synapses are activated by different sources of spiking
activity (selective, recurrent, hierarchical, and back-
ground). NMDAR activation has a slower rise and
decay and is described by

dgaNMDA

dt
¼ � gaNMDA

sfp;igNMDA

þ aNMDA

� xNMDAð1� gaNMDAÞ; ð4Þ

where sNMDA is the time constant of receptor deacti-
vation and aNMDA controls the saturation of NMDAR
channels at high presynaptic spike frequencies. The
slower opening of NMDAR channels is captured by

dxNMDA

dt
¼ �xNMDA

sx
þ dðt� tf Þ; ð5Þ

where sx and g determine the rate of channel opening
and the voltage-dependence of NMDARs respectively.

Recurrent synaptic current to each neuron j is
defined by

Figure 1. (A) Schematic of the PPC-only model. Solid circles depict

pyramidal neurons (green) and inhibitory interneurons (red),

arranged periodically by their connectivity structures.The 4:1 ratio

of pyramidal neurons to interneurons preserves their population

sizes in the model. Arced and straight arrows depict synaptic

connectivity within and between classes of neuron respectively.

Thin Gaussian curves depict the structure of this connectivity

(within, solid; between, dotted). The Gaussian curve on the left

depicts the RF of a pyramidal neuron. Red, open green, and wide

green arrows depict GABAR, AMPAR-only, and AMPAR-NMDAR

synapses, respectively. (B) Synaptic currents onto a pyramidal

neuron (solid) andan interneuron (dotted)duringthedelay interval

of the one-itemmemory task. Red, light green, and dark green

curvesshowGABAR,AMPAR,andNMDARcurrents,respectively. (C)

Membrane potential of a pyramidal neuron and an interneuron

duringthepretrial interval. (D)SchematicofthePPC-PFCmodel.The

PPC network is identical to the PPC-only model. The PFC network

differs only in the strength of GABAR conductance onto pyramidal

neurons. Open and thin arrows depict topographically aligned

feedforward and feedback projections, mediated by AMPARs and

NMDARs, respectively. See Methods for description of the model.
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Irecj ¼ IrecAMPA;j þ IrecNMDA;j þ IrecGABA;j

IrecAMPA;j ¼
X

k
1=cfppc;pfcg

g � Gfp;igAMPA

� grecAMPA;kðVj � VEÞ � Wrecjpp;ip
j;k IrecNMDA;j

IrecNMDA;j ¼
X

k
1=cfppc;pfcg

g � Gfp;igNMDA

� grecNMDA;kðVj � VEÞ � Wrecjpp;ip
j;k � gjIrecGABA;j

IrecGABA;j ¼
X

k
1=cfppc;pfcg

g � Gfp;igGABA

� grecGABA;kðVj � VIÞ � Wrecjpi;ii
j;k ; ð6Þ

where cfppc;pfcg
g is a scale factor controlling the relative

strength of extrinsic and intrinsic synaptic conductance
(subscripts ppc and pfc indicate that its value is assigned
separately to each network); GAMPA, GNMDA, and
GGABA are the respective strengths of AMPAR,
NMDAR, and GABAR conductance; VE is the
reversal potential for AMPARs and NMDARs, and VI

is the reversal potential for GABARs; grecAMPA;k,
grecNMDA;k, and grecGABA;k are the activation of AMPAR,
NMDAR, and GABAR receptors respectively by
presynaptic neurons k; and matrices Wrecjpp,ip and
Wrecjpi,ii scale conductance strength or weight according
to the connectivity structure of the network. This
structure depends on the class of neuron receiving and
projecting spiking activity, where superscripts pp, ip, pi,
and ii denote connections to pyramidal neurons from
pyramidal neurons, to interneurons from pyramidal
neurons, to pyramidal neurons from interneurons, and
to interneurons from interneurons, respectively. For
each of these structures s � {pp, ip, pi, ii}, Wrecjs is a
Gaussian function of the distance between periodically
arranged neurons, where the weight W

recjs
j;k to neuron j

from neuron k is given by

W
recjs
j;k ¼ e

�d2=2r2
recjs � ð1� frecjsÞ þ frecjs: ð7Þ

The distance between neurons is defined by d ¼ min
ðjj� kjDx; 2p� jj� kjDxÞ for Wrecjpp and Wrecjii, and
by d ¼ minðjj� zjDx; 2p� jj� zjDxÞ for Wrecjip and
Wrecjpi, where z ¼ Np=Ni � k for Wrecjip and z ¼ Ni=Np

� k for Wrecjpi. Dx¼ 2p/N{p,i} is a scale factor and rrecjs
determines the spatial extent of connectivity. Parameter
frecjs allows the inclusion of a baseline weight, with the
function normalized to a maximum of 1 (0 � frecjs , 1).

Background activity

For each neuron, in vivo cortical background
activity is simulated by current Iback, defined by

Iback ¼ Iback;syn þ Iback;inj; ð8Þ
where Iback,syn is driven by synaptic bombardment and

Iback,inj is noisy current injection. The former is
generated by AMPAR synaptic activation, where
independent, homogeneous Poisson spike trains are
provided to all neurons at rate lback. I

back,syn is
therefore defined by

Iback;syn ¼ cfppc;pfcg
g � k � Gfp;igAMPA

� gbackAMPAðV� VEÞ; ð9Þ
where k is a scale factor and gbackAMPA is given in Equation
3.

For Iback,inj, we used the point-conductance model by
Destexhe, Rudolph, Fellous, and Sejnowski (2001):

Iback;inj ¼ geðtÞðV� VEÞ þ giðtÞðV� VIÞ: ð10Þ
The time-dependent excitatory and inhibitory con-

ductances ge(t) and gi(t) are updated at each timestep Dt
according to

geðtþ DtÞ ¼ g0e þ ½geðtÞ � g0e� � e�Dt=se

þ AeT ð10Þ
and

giðtþ DtÞ ¼ g0i þ ½giðtÞ � g0i� � e�Dt=si

þ AiT ð11Þ
respectively, where g0e and g0i are average conduc-
tances, se and si are time constants, and T is normally
distributed random noise with 0 mean and unit
standard deviation. Amplitude coefficients Ae and Ai

are defined by

Ae ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dese
2

1� exp
�2Dt

se

� �� �s
ð13Þ

and

Ai ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Disi
2

1� exp
�2Dt

si

� �� �s
ð14Þ

respectively, where De ¼ 2r2
e=se and Di ¼ 2r2

i =si are
noise ‘‘diffusion’’ coefficients. See Destexhe et al. (2001)
for the derivation of these equations.

The PPC-PFC model

In the hierarchical model, interareal projections
mediate synaptic currents Ihier � {Iff, Ifb}, where
superscript ff (fb) refers to feedforward (feedback)
currents onto neurons in the PFC (PPC) network from
neurons in the PPC (PFC) network. Only pyramidal
neurons make interareal projections, where feedfor-
ward projections are mediated by AMPARs (onto
pyramidal neurons only) and feedback projections are
mediated by NMDARs (onto pyramidal neurons and
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interneurons). Feedforward currents at each pyramidal
neuron j in the PFC network are defined by

Iffj ¼
X
k

k � Gp
AMPA � g

ff
AMPA;kðVj � VEÞ

� Wff
j;k ð15Þ

where gffAMPA;k is the activation of AMPAR receptors
by presynaptic pyramidal neurons k in the PPC
network, and matrix Wff

j;k ¼ expð�d2=2r2
ffÞ scales con-

ductance strength according to the structure of
feedforward connectivity. Constant d is given above for
recurrent synaptic structure Wrecjpp, where the two
networks are topographically aligned (i.e., the lateral
distance between neuron j in the PFC network and
neuron k in the PPC network is the same as that
between neurons j and k within either network).

Feedback currents at each neuron j in the PPC
network are defined by

Ifbj ¼
X
k

cfbg � G
fp;ig
NMDA � g

fb
NMDA;kðVj � VEÞ

� Wfbjpp;ip
j;k ð16Þ

where cfbg is a scale factor, gfbNMDA;k is the activation of
NMDAR receptors by presynaptic pyramidal neurons
k in the PFC network, and matrices Wfbjpp,ip scale
conductance strength according to the structure of FB
connectivity. Each of these structures s � {pp, ip} is
defined byW

fbjs
j;k ¼ e

�d2=2r2
fbjs , where d is defined forWfbjpp

and Wfbjip in the same way as for Wrecjpp and Wrecjip

respectively above.

Simulated WM task

We simulated the stimulus array by providing
independent, homogeneous Poisson spike trains to all
pyramidal neurons j in the PPC network, where spike
rates were drawn from a normal distribution with mean
lsel corresponding to the centre of a Gaussian response
field (RF) defined by Wrf

j;k ¼ expð�d2=2r2
rfÞ. Constant d

is given above for recurrent synaptic structure Wrecjpp,
rrf determines the width of the RF, and subscript k
indexes the neuron at the RF center. Spike response
adaptation by upstream visually responsive neurons
was modeled by a step-and-decay function

lselðtÞ ¼
ðlinit � linit=ldivÞ e�ðt�tvrdÞ=sl þ linit=ldiv for t.tvrd
0 for t � tvrd

�
ð17Þ

where linit determines the initial spike rate, ldiv
determines the asymptotic rate, sl determines the rate
of upstream response adaptation, and tvrd is a visual
response delay. These selective spike trains were
provided for 300 ms, following the 300-ms pretrial

interval, and followed by a 1000-ms delay (e.g., Figure
2A). The stimuli were mediated by AMPARs only, so
for all pyramidal neurons j in the PPC network,

Iselj ¼ cppcg � k � Gp
AMPA � gselAMPA;jðVj � VEÞ

� Wrf
j;k: ð18Þ

All simulations were run with the standard imple-
mentation of Euler’s forward method, where the
timestep was Dt¼ 0.25ms.

Determining WM performance

We ran 100 trials with one to eight stimuli
(henceforth the n-item memory task; 1 � n � 8). To
determine WM performance on each trial, spike density
functions (SDFs) were calculated for all pyramidal
neurons in the network by convolving their spike trains
with a rise-and-decay function

ð1� e�t=sf Þ � e�t=sd
s2
d

srþsd

ð19Þ

where t is the time following stimulus onset and sr¼1 ms
and sd¼ 20 ms are the time constants of rise and decay
respectively (Thompson, Hanes, Bichot, & Schall, 1996;
Standage & Paré, 2011). On each n-item trial, we
calculated the mean of the SDFs over the last 300 ms of
the delay, obtaining the average activity over the
network, and then partitioned the network into n equal
regions. The location of each item was centered within
each region. We then fit the mean activity in each region
with a Gaussian function with four parameters: the
height of the peak, the position of the peak, the standard
deviation (controlling width), and the height that is
approached asymptotically from the peak. An item was
considered accurately stored if the fitted Gaussian
satisfied three criteria: the height parameter h exceeded
30 Hz, the difference between h and the fitted asymptote
on both sides of the peak exceeded h/2 Hz, and the
position parameter was within Dc¼ 108 of the center of
the RF for that item. For the first criterion, we chose 30
Hz because in electrophysiological experiments with
macaque monkeys (Johnston et al., 2009 [SfN ab-
stracts]), memory trials were discarded if the recorded
PPC neuron did not fire at least 10 spikes during the last
300 ms of the delay (10/0.3s ’ 30 Hz). The second
criterion dictates that items are only considered accu-
rately stored if the population response is discriminable.
The third criterion ensures that the memory of the
location of the item is close to the actual location.

Parameter values

In setting parameter values in the two models, our
aim was to justify every value by anatomical and
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physiological data, thus constraining our choices as
much as possible, and then to use control parameters to
explore the models’ performance on simulated WM
tasks. In the PPC-only model, our control parameter
was cppcg (Equations 6, 9, and 18), governing the relative
strengths of extrinsic and intrinsic synaptic conduc-
tance and therefore the strength of recurrent processing
(see Results section, Competitive encoding in the PPC-
only model alleviates overload, but conflicts with
experimental data). Parameter values for the PPC-only
network are provided in Table 1 and justified by
Standage and Paré (2018).

In the PPC-PFC model, the PPC network was
identical to the PPC-only model. The PFC network was
identical to the PPC network, except that GABAR
conductance onto pyramidal neurons was twice as
strong ðGp

GABA ¼ 3nSÞ, facilitating strong competition
during stimulus encoding (see below for differences
based on inter-network connectivity). We limited the
number of parameters in the PPC-PFC model by
making three simplifying assumptions. First, we
assumed that only pyramidal neurons make interareal
projections (see Jones, 1984; White, 1989; Tomioka &
Rockland, 2007) and we therefore omitted interareal
projections from inhibitory interneurons. Second,
based on evidence that feedforward and feedback
excitation are predominantly mediated by AMPARs
and NMDARs respectively (Self, Kooijmans, Supèr,
Lamme, & Roelfsema, 2012), we omitted feedforward
NMDARs and feedback AMPARs altogether. Third,
feedforward and feedback projections were each
assumed to be topographically organized, based on
evidence that the proportion of feedforward supra-
granular projections and feedback infragranular pro-
jections increase with hierarchical distance between
cortical areas. Since supragranular and infragranular

projections are believed to be topographic and diffuse
respectively, and since PPC and lateral PFC are
separated by a single hierarchical layer (despite their
physical distance; see Goldman-Rakic, 1988), we
assumed that the proportion of topographic supra-
granular projections and diffuse infragranular projec-
tions between these areas is approximately equal in
both directions. See Markov and Kennedy (2013) for a
more thorough description of these macrocircuit
principles. Given the diffuse activity already simulated
by background current Iback (Equations 9 and 10), we
ignored the effect of infragranular feedforward and
feedback projections between the PPC and PFC
networks, and simulated topographic supragranular
connectivity only. The width of feedforward RFs (PFC
network) was the same as for stimulus-selective RFs in
the PPC network (rff¼rrf; Equations 15 and 18), based
on evidence that differences in dendritic branching are
minimal between hierarchically adjacent cortical areas
(Elston, 2002). Feedback RFs were wider than feed-
forward RFs (rfb ¼ 1.5 � rff; Equations 15 and 16)
because dendritic branching in supragranular layers is
more extensive than in (feedforward input) layer 4.
Finally, we set the strength of feedforward (AMPAR)
projections to pyramidal neurons in the PFC network
(Equation 15) to the same value as extrinsic AMPARs
onto pyramidal neurons in each of the networks
(Equation 9). Together with the strong GABAR
conductance onto pyramidal neurons in the PFC
network (see above), this strong feedforward connec-
tivity supported competition between stimulus-selective
populations during the stimulus interval. We therefore
omitted feedforward projections onto PFC interneu-
rons (see Discussion section, Beyond local-circuit
attractor models) and we controlled interareal connec-
tion strength by varying the strength of feedback

Figure 2. A single trial of the one-item memory task with the PPC-only model for the lowest and highest values of control parameter

cppcrec ¼ 1=cppcg , furnishing weak (A, cppcrec ¼ 1:33) and strong (B, cppcrec ¼ 4) recurrent dynamics, respectively. In raster plots, pyramidal

neurons and interneurons are indexed from 1–400 and 401–500, respectively. Each right-side panel shows the mean rate of the item-

encoding pyramidal population. Thick horizontal bars show the timing of the stimulus.
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connections to the PPC network only (described in the
next section).

Results

Competitive encoding in the PPC-only model
alleviates overload, but conflicts with
experimental data

The data being addressed are summarized in Figure
3. In the PPC-only model, we used control parameter
cppcg (Equations 6, 9, and 18) to modulate network
dynamics, scaling the strength of all extrinsic synapses

inversely with that of all intrinsic synapses. By applying
this scale factor to excitatory and inhibitory synapses
onto pyramidal neurons and interneurons, we were able
to maintain excitatory/inhibitory balance, controlling
retention ability by recurrent excitation and competi-
tive interactions by lateral inhibition. We determined
the floor and ceiling on cppcg by stipulating that the
model must perform the one-item memory task with
90% accuracy. To this end, we ran 100 trials of the task
for a range of values of cppcg (increments of 0.05), finding
that our criterion was satisfied for 0:25 � cppcg � 0:75.
Figure 2 shows example trials of the one-item task for
the highest and lowest values of this parameter.
Because lower values support stronger recurrent
dynamics (intrinsic synaptic conductance values are
divided by cppcg ; Equation 6), it is intuitive to define

Parameter Pyr. neurons Interneurons Description

Cm 0.5 nF 0.2 nF Membrane capacitance

gL 25 nS 20 nS Leakage conductance

EL –70 mV –70 mV Leakage equilibrium potential

#v –50 mV –50 mV Spike threshold

Vres –60 mV –60 mV Reset potential

sref 2 ms 1 ms Absolute refractory period

VE 0 mV 0 mV Reversal potential for AMPARs and NMDARs

VI –70 mV –70 mV Reversal potential for GABARs

sx 2 ms 2 ms Time constant of channel opening for NMDARs

aNMDA 0.5 kHz 0.5 kHz Saturation of NMDAR channels

Mg 1 mM 1 mM Extracellular magnesium concentration

GAMPA 0.2 nS 0.4 nS Conductance strength of AMPARs

GNMDA 4 nS 2 nS Conductance strength of NMDARs

GGABA 1.5 nS 0.75 nS Conductance strength of GABARs

sAMPA 4 ms 2 ms Time constant of deactivation of AMPARs

sNMDA 100 ms 50 ms Time constant of deactivation of NMDARs

sGABA 10 ms 10 ms Time constant of deactivation of GABARs

rrecjpp,ip 0.2 0.2 Width of connectivity from pyramidal neurons

rrecjpi,ii 0.4 & 0.4 Width of connectivity from interneurons

frecjpp,ip 0 0 Unstructured connectivity from pyramidal neurons

frecjpi,ii 1/3 1/3 Unstructured connectivity from interneurons

g0e 2.5 nS 2.5 nS Average excitatory background conductance

g0i 12.5 nS 12.5 nS Average inhibitory background conductance

se 2.5 ms 2.5 ms Time constant of excitatory background conductance

si 10 ms 10 ms Time constant of inhibitory background conductance

re 5 nS 5 nS Standard deviation of excitatory diffusion coefficient

ri 12.5 nS 12.5 nS Standard deviation of inhibitory diffusion coefficient

rrf 0.1 Width of response fields

linit 10,000/cgHz Initial (aggregate) spike rate to RF center

ldiv 10 Divisor for upstream response adaptation

sl 50 ms Time constant of upstream response adaptation

tvrd 50 ms Visual response delay

k 10 Scale factor for extrinsic AMPAR conductance

Table 1. Parameter values for the PPC-only model. Notes: Synaptic connectivity parameters (pp, ip, pi, ii) are indexed to a receiving
neuron from a transmitting neuron. In the PPC-PFC model, PPC was identical to the PPC-only model. PFC was identical to PPC,
except that GGABA

p was twice as strong (see text). Interaerial parameter values are provided and justified in Methods section,
Parameter values.
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parameter cppcrec ¼ 1=cppcg , so that higher values support
stronger recurrent dynamics. We use the latter term in
the description of our results below.

We ran 100 trials for each value of cppcrec in each load
condition of the multiple-item memory task (2 � n � 8,
where n is the number of items). See Figure 4 for
example trials of the eight-item task. For each load
condition, we calculated the mean number of items
accurately encoded during the stimulus interval,
referred to as the effective load E(n), and the mean
number of items accurately retained over the memory
delay, referred to as capacity K(n). We refer to the
maximum value of K(n) as peak capacity k̂ and we
define WM overload as
H ¼ 1� K½max½ðnÞ�=max½KðnÞ�, i.e., overload refers to
a decrease in capacity on the eight-item task, relative to
peak capacity. For convenience, these and other terms
are defined in Table 2.

Our results with the PPC-only model distinguished
between two subsets of our control parameter. For
cppcrec , 2:5, peak capacity increased with the strength of
recurrent dynamics (Figure 5A), almost all stimuli were
encoded (Figure 5B), and overload was catastrophic for
all values of the parameter (K[8] was close to 0; Figure
5C). For cppcrec .2:5, peak capacity, effective load and
overload all decreased with stronger recurrent dynamics.
Thus, cppcrec ¼ 2:5 separated two qualitatively different
regimes, both of which supported the control of peak
capacity by cppcrec , but only one of which supported the

Figure 3. A summary of behavioral data showing WM overload.

(A–B) Peak capacity (A) and overload (B) shown by six studies of

multiple-item WM. More pronounced overload occurs with

lower capacity performance (across subjects, tasks, and

conditions of the same task; see text), such that peak capacity

and overload show a strong negative correlation (C). (C)

Overload over peak capacity (Pearson correlation coefficient r¼
0.889, p ¼ 2.084e � 5).

Figure 4. A single trial of the eight-item memory task with the PPC-only model for each of three values of control parameter

cppcrec ¼ 1=cppcg , on which the network accurately retained three (A, cppcrec ¼ 2:86), two (B, cppcrec ¼ 3:33), and one (C, cppcrec ¼ 4) item(s).

Raster plots (left) and mean spike rates (right) are described in Figure 2. Here, colors show the correspondence between item-

encoding populations in the left and right panels. Competition during the stimulus interval reduces the load to three (A), two (B) and

one (C) item(s) by the onset of the memory delay.
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control of effective load and overload. Consequently, we
limit further consideration of the PPC-only model to
cppcrec � 2:5, where stronger recurrent dynamics imposed
more intense competition during stimulus encoding,
limiting effective load and thereby reducing overload. In
this regime, peak capacity was two or three items for all
but the strongest recurrent dynamics, consistent with
that of human and monkey subjects (e.g., Luck & Vogel,
1997; Heyselaar, Johnston, & Paré, 2011), but the
alleviation of overload came at the expense of peak
capacity (significant positive correlation between these
measures; Figure 5D). The available data show the
opposite trend: Overload is typically more pronounced
among lower capacity subjects (Linke et al., 2011;

Matsuyoshi et al., 2014; Fukuda, Woodman, & Vogel,
2015), on lower capacity tasks (Xu, 2007), and in lower
capacity conditions of the same task (Chee & Chuah,
2007; see Figure 3). Furthermore, recurrent dynamics
strong enough to eliminate overload altogether fur-
nished a peak capacity of k̂’ 1 item, unrealistically low
for healthy adult subjects.1 Thus, the PPC-only model
provides proof of concept for competitive encoding, but
is qualitatively inconsistent with prominent trends in
behavioral data (Figure 3). Furthermore, spiking activity
in the model conflicts with neural data from PPC, which
typically show a response to all items in a stimulus array,
prior to the selection of task-relevant items (e.g.,
Thomas & Paré, 2007). This discrepancy is implicit in

Term Description

PPC Posterior parietal cortex

PFC Lateral prefrontal cortex

PPC The PPC network in the PPC-only model

and the PPC-PFC model

PFC The PFC network in the PPC-PFC model

cppcg Control parameter for PPC, scaling synaptic

conductance (Equations 6, 9, and 18)

cgpfc Control parameter for PFC, scaling synaptic

conductance (Equations 6, 9, and 18)

cgfb Control parameter scaling conductance at

feedback synapses to PPC from PFC

(Equation 16)

PPC modulation Modulation of recurrent dynamics in

PPC by cppcrec ¼ 1=cppcg

PFC modulation Modulation of recurrent dynamics in

PPC by cppcrec ¼ 1=cppcg

Inter-aerial

modulation

Modulation of feedback connectivity by

cfbg
2-parameter

modulation

Simultaneously varying two control

parameters, while holding the third

one fixed

3-parameter

modulation

Simultaneously varying all three control

parameters

Memory load n Number of WM items on a given trial,

a.k.a. the load condition

Capacity K(n) Mean number of items accurately

retained over the memory delay for

load n

Peak capacity k̂ Maximum value of K(n) over all n

Effective load E(n) Mean number of items accurately

encoded during the stimulus interval

for load n

E0 Minimum ratio of effective load to

actual load over all n, i.e., E0 ¼
min(E(n)/n)

WM overload H H ¼ 1� K½maxðnÞ�=max KðnÞ�

Table 2. Summary of terminology defined in the text, including
control parameters for the PPC-only model and the PPC-PFC
model.

Figure 5. Competitive encoding alleviates overload in the PPC-

only model, but at a cost to peak capacity (see text). (A)

Capacity K(n) in each load condition (number of items n) for

each value of control parameter cppcrec ¼ 1=cppcg . Error bars show

standard error. Color coding interpolates between weakest

(dark blue) and strongest (dark red) recurrent dynamics (see

legend in Panel B). Peak capacity is highest for cppcrec ¼ 2:5 and

K(8) is close to 0 for cppcrec below this value (K[8] , 0.15). Thus,

there is no advantage to cppcrec , 2:5. (B) The mean number of

items encoded during the stimulus interval for each value of

cppcrec , referred to as the effective load E(n). For cppcrec , 2:5, E(n) .

0.9 � n in all load conditions. For cppcrec . 2:5, encoding is

increasingly competitive (bottom four curves). (C) WM overload

for each value of cppcrec , calculated as the relative change from

peak capacity to K(8) (see text). For cppcrec . 2:5, overload is

greatly reduced. (D) Overload over peak capacity. For cppcrec < 2:5,
the linear fit (solid line) shows a significant positive correlation

between these measures (r¼ 0.955, p¼ 0.045). The dashed line

depicts two qualitatively different regimes in the model,

separated by cppcrec ¼ 2:5.
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Figure 5B and explicit in Figure 4A through C, where
the effective load on the eight-item task is three, two,
and one items respectively. We therefore turned to the
PPC-PFC model, investigating its ability to account for
these and other data.

The PPC-PFC model alleviates overload in a
manner consistent with neural and behavioral
data

We used three control parameters with the PPC-PFC
model. Once again, we controlled recurrent dynamics
in the PPC network (henceforth PPC) with parameter

cppcrec . We controlled recurrent dynamics in the PFC
network (henceforth PFC) in the same way with
parameter cpfcrec ¼ 1=cpfcg (Equations 6, 9, and 18), and we
controlled the strength of feedback projections to PPC
from PFC with parameter cfbg (Equation 16). These
control parameters and related terms are defined in
Table 2. We began by assigning values to these
parameters that explicitly capture the computational
principles identified above: weak recurrent dynamics in
PPC, allowing the initial encoding of all items, and
strong recurrent dynamics in PFC, supporting strong
competition during stimulus encoding. Under this
approach, persistent mnemonic activity was supported
by strong feedback connectivity to PPC from PFC. An
example of the eight-item memory task is shown in
Figure 6, where our chosen parameter values are
provided in the figure caption. The model had a peak
capacity of k̂’ 3 items, overcame overload almost
entirely (H ’ 0.075) and allowed the initial encoding of
all items in PPC (Figure 7). To emphasize the
effectiveness of the proposed mechanism, we compared
these results to the best possible performance by the
PPC-only model, selecting the highest capacity for each
load condition across all values of cppcrec . As shown in
Figure 7A, the PPC-only model cannot reduce overload
without a cost to peak capacity, even if we assume
perfect load-dependent modulation of network dy-
namics by our control parameter.

Simulated cognitive control by modulation of PPC
dynamics, PFC dynamics, and interaerial connectivity

Having determined that hierarchical recruitment of
competition alleviates overload in the PPC-PFC model,
we sought to determine whether less overload would be
seen under parameters supporting higher peak capacity,

Figure 6. A single trial of the eight-item memory task with the PPC-PFC model, on which three items were accurately retained. Raster

plots (right), mean spike rates (left), and corresponding color schemes are described in Figures 2 and 4. Here, spiking activity is shown

in the PPC network (PPC, bottom) and the PFC network (PFC, top). Weak recurrent dynamics in PPC (cppcrec ¼ 0:67) support the initial

encoding of all items in the network, but the effective load is reduced by competitive encoding in PFC (cpfcrec ¼ 4). Persistent activity is

supported by interareal projections (cfbg ¼ 3).

Figure 7. Competitive encoding in PFC alleviates overload in the

PPC-PFC model, where weak recurrent dynamics in PPC permit

the initial encoding of all items. (A) Capacity K(n) for the PPC-

PFC model (thicker curve) and the ‘‘best of’’ K(n) in the PPC-

only model (thin curve; highest K(n) over all cppcrec , see text). (B)

Effective encoding E(n) in the PPC-PFC model, where solid and

dashed curves correspond to PPC and PFC, respectively. Error

bars show standard error. Control parameters are cppcrec ¼ 0:67,
cpfcrec ¼ 4, and cfbg ¼ 5.
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per the available data (Figure 3; Chee & Chuah, 2007;
Cusack et al., 2009; Matsuyoshi et al., 2014; Fukuda,
Woodman, &Vogel, 2015). To this end, we ran a block of
trials (100 trials for memory loads 1:8) for a range of
values of each control parameter, calculating peak
capacity k̂ and overloadH for each combination of values
(each configuration). We then determined the correlation
(Pearson’s r) between peak capacity and overload rk̂;H
with monotonic changes to our parameter values,
simulating cognitive control by modulation of PPC
dynamics (varying cppcrec , henceforth PPC modulation),
PFC dynamics (varying cpfcrec, henceforth PFC modula-
tion), and the functional connectivity between PPC and
PFC (varying cfbg , henceforth interaerial modulation).
Overall, we ran blocks for 500 configurations, spanning
10 values of cppcrec (0.67:0.1:1.67), five values of cpfcrec
(2.5:0.05:5), and 10 values of cfbg (1:1:10). This range of
values was sufficiently broad and fine-grained for
monotonic trends in rk̂;H to saturate and for nonmono-
tonic trends to clearly reverse direction (see below).

We first considered our control parameters in
isolation from one another, calculating rk̂;H over all
values of a given parameter for every combination of
the remaining two parameters. PPC modulation yielded
a strong negative correlation over a broad region of the
cpfcrec 3 cfbg parameter space (rk̂;H ,�0:5 for 14 out of 50
combinations of cpfcrec and cfbg ), where moderate-to-strong
recurrent dynamics in PFC coincided with moderate to
strong feedback projections to PPC (Figure 8A). Thus,
a negative correlation was seen when competitive
encoding was strong enough to select a manageable
number of items and feedback projections were strong
enough to sustain their neural representations over the
delay. Notably, peak capacity increased and overload
decreased as recurrent dynamics in PPC were weakened
(lower cppcrec , Figure 9A through C), suggesting that if
PFC selects memoranda and interareal projections
sustain their representations after stimulus-offset, then
the best thing for PPC to do is give way to its inputs,
thereby limiting competition during the delay.

PFC modulation yielded positive correlations over
the full cppcrec 3 cfbg parameter space (Figure 8B). This
result was predictable, since limiting the number of
items available for storage limits peak capacity. In
other words, cpfcrec embodies a trade-off between peak
capacity and overload, as seen in the PPC-only model
(Figure 5). Stronger competitive encoding therefore
had a monotonic effect on overload (e.g., Figure 9F).

Interareal modulation yielded a strong negative
correlation (rk̂;H ,�0:5 for six out of 50 combinations
of cppcrec and cfbg ) in the corner of the cppcrec 3 cpfcrec parameter
space where stronger recurrent dynamics in PPC
coincide with weaker recurrent dynamics PFC (Figure
8C). Thus, a negative correlation was seen when PFC
was insufficiently selective and PPC was too compet-
itive to be overcome by weak (interareal) feedback
projections. Stronger feedback projections therefore
increased peak capacity and decreased overload by
providing more support to the subset of items selected
by PFC. Notably, increasing the strength of PPC-PFC
connectivity rarely had a monotonic effect on overload,
so we calculated the correlation between peak capacity
and overload for a continuous subset of cfbg , where this
subset ranged from cfbg ¼ 1 to the value of cfbg producing
the least overload for a given combination of cppcrec and
cpfcrec (requiring at least three values, Figure 9I). A strong
negative correlation (rk̂;H ,�0:5) occurred for 18 out
of 50 combinations of cppcrec and cpfcrec, most of which
resulted from a broadening of the parameter region
identified above (strong and weak recurrent dynamics
in PPC and PFC respectively; compare panels C and D
in Figure 8). The rest were spurious, where the
magnitude of overload to be overcome was negligible
(e.g., overload was always below H ¼ 0.1 for the
negative correlation in Figure 9J through L) or where
overload was considerably reduced, but remained high
(e.g., overload did not drop below H ¼ 0.1 in Figure
9M through O).

Figure 8. Correlation between peak capacity and overload in the PPC-PFC model under PPC modulation (varying cppcrec , A), PFC

modulation (varying cpfcrec , B), and modulation of PPC-PFC connectivity (interareal modulation, varying cfbg , C–D). Each heat map shows

the Pearson correlation coefficient rk̂;H for every combination of the other two parameters. Correlations were calculated over the full

range of cfbg (C) and the largest continuous subset of values showing a reduction in overload (D, see text). White dots in Panels A and

D show configurations with a significant negative correlation (p , 0.05), where peak capacity and overload are consistent with

behavioral data from WM tasks, and effective encoding in PPC is consistent with neural data from visual tasks.
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Figure 9. Examples of PPC modulation (first row), PFC modulation (second row), and interareal modulation (third to fifth rows) under a

single configuration of the remaining two parameters. First, second, and third columns show capacity as a function of load, overload as

a function of control parameter (given by legend, inset), and overload as a function of peak capacity respectively. (A–C) PPC modulation

with cpfcrec ¼ 4 and cfbg ¼ 5. Weaker PPC dynamics increase peak capacity (A) and reduce overload (B), producing a negative correlation

between these measures (r¼�0.935, p¼ 1.000e� 4, [C]). The line in Panel C shows the best linear fit (least squares). (D–F) PFC

modulation with cppcrec ¼ 0:67 and cfbg ¼ 10. Stronger PFC dynamics reduce overload (E) at the expense of peak capacity (D), producing a

positive correlation between these measures (r¼ 0.916, p¼ 0.029, [F]), as in the PPC-only model. (G–H) Interareal modulation with

cppcrec ¼ 1:00 and cpfcrec ¼ 2:86. Stronger feedback projections to the PPC network from the PFC network increase capacity (G) and

decrease overload (H) over a continuous subset of cfbg (1< cfbg < 3), producing a negative correlation (r ¼�0.998, p¼ 0.045, short-

dashed line in [I]). Stronger feedback projections increase capacity and overload, producing a positive correlation over another

!
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PPC modulation and interaerial modulation alleviate
moderate overload and satisfy quantitative constraints

Next, we sought to determine whether peak capacity
and the reduction in overload were quantitatively
consistent with behavioral data in the parameter
regions showing a significant negative correlation (p ,

0.05), and whether PPC was consistent with neural
data. As shown in Figure 3, peak capacity should
exceed around three items (see Cowan, 2001; Luck &
Vogel, 2013) and overload should be reduced to close
to zero (Chee & Chuah, 2007; Linke et al., 2011;
Fukuda, Woodman, & Vogel, 2015). Additionally,
PPC should initially encode all stimuli (Thomas &
Paré, 2007). For the last of these requirements, we
defined E0 as the minimum ratio of the effective load to
the actual load over all load conditions, that is, E0 ¼
min(E(n)/n) (in practice, E0 ¼ E(8)/8 under all
configurations). Allowing a tolerance of 10%, we
therefore searched for parameter regions in which
k̂.2:7, min(H) , 0.1 and E0 . 0.9. We included the
additional constraint that the magnitude of overload to
be overcome (max[H]) must be greater than 0.1. Under
PPC modulation, these criteria were satisfied by five
contiguous locations in the parameter region showing a
negative correlation (white dots in Figure 8A). Under
interaerial modulation, they were not satisfied in any
parameter region, but they were satisfied in one
location of the cppcrec 3cpfcrec parameter space when we
searched the continuous subsets of cfbg described above
(white dot in Figure 8D). These results were unchanged
when we lowered our criterion for peak capacity to
two, again with a tolerance of 10% (k̂.1:8). Thus, in
isolation, PPC modulation and interareal modulation
were both able to increase capacity and reduce
overload in a manner consistent with neural and
behavioral data from multiple-item visual and WM
tasks, where weaker PPC dynamics and stronger
feedback projections supported better task perfor-
mance. PPC modulation was the more robust mecha-
nism, as functional connectivity was only able to
account for these data under a single combination of
the other two parameters.

Control of distributed network dynamics accounts for
group differences in studies showing pronounced
overload

Finally, we considered our control parameters in
combination with one another, aiming to provide a
better quantitative account of the magnitude of

Figure 10. Peak capacity (A) and overload (B) corresponding to

low-capacity (gray) and high-capacity (black) performance by

experimental subjects (Data, left) and by the PPC-PFC model

under PPC modulation (middle left), interaerial modulation

(middle), two-parameter modulation (middle right), and three-

parameter modulation (right). Experimental data are repro-

duced from Figure 3. Low- and high-capacity data are

horizontally staggered for clarity. Low- and high-capacity

configurations under PPC modulation correspond to cppcrec ¼ 1:67
(strongest) and cppcrec ¼ 0:67 (weakest), shown in Figure 11A

through C. Low and high-capacity configurations under

interaerial modulation correspond to cfbg ¼ 1 (weakest) and

cfbg ¼ 3, shown in Figure 11G through I. Low and high-capacity

configurations under 2-parameter and 3-parameter modulation

correspond to Figures 11D through F and A through C,

respectively.

 
continuous subset (r¼ 0.961, p¼ 1.000e� 4, long-dashed line in [I]). The solid line in Panel I shows the linear fit to the full range of

cfbg . The horizontal dotted line shows H¼ 0.1, chosen as the threshold for alleviating overload (see text). (J–L) Interareal modulation

with cppcrec ¼ 0:83 and cpfcrec ¼ 4. Stronger feedback projections increase capacity (J) and decrease overload (K) over a continuous subset

of cfbg (1< cfbg < 4), producing a negative correlation (r¼�0.969, p¼ 0.031, short-dashed line in [L]) but the magnitude of overload to

be overcome is negligible (H , 0.07 for all four values fit by the short-dashed line in [L]). Stronger feedback projections increase

capacity and overload over another continuous subset, producing a positive correlation (r¼ 0.948, p¼ 0.001, long-dashed line in [L]).

(M–O) Interareal modulation with cppcrec ¼ 1:67 and cpfcrec ¼ 2:5. Stronger feedback projections increase capacity (M) and decrease

overload (N) over a continuous subset of cfbg (1< cfbg < 4), before overload reverses direction with further increases in cfbg . Overload is

greatly reduced in magnitude, but never reaches a value consistent with high-capacity subjects and conditions (H . 0.17 for all cfbg ).
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overload shown by low-capacity subjects, and in low-
capacity tasks and conditions (henceforth low-capacity
performance). Under PPC modulation and interareal
modulation, the most extreme cases of overload in the
parameter regions satisfying our criteria were H ’ 0.2
(Figure 9A through C and G through I, and Figure 10).
As shown in Figure 10 (PPC modulation and inter-
aerial modulation), this degree of overload is consistent
with some data (e.g., Cusack et al., 2009; Linke et al.,
2011), but overload has approached 50% of peak
capacity in several studies (e.g., Chee & Chuah, 2007;
Xu, 2007; Fukuda, Woodman, & Vogel, 2015) and has
even approached 100% among elderly, low-capacity
subjects in extreme load conditions (Matsuyoshi et al.,
2014). We therefore investigated whether simultaneous
variation of our control parameters could alleviate the
more extreme cases of overload that occur with low-
capacity performance, resulting in peak capacity
consistent with high-capacity performance in the same
studies. High-capacity performance is explained by the
computational principles identified above: strong re-
current dynamics in PFC, supporting competitive
encoding; strong feedback projections to PPC from

PFC, supporting persistent activity; and weak recurrent
dynamics in PPC, limiting competition during the
memory delay. These principles not only capture a
tangible strategy for WM storage on multiple-item
tasks (selection of a subset of items for storage), but
also offer a specific set of mechanisms for their
implementation in frontoparietal circuitry. Thus, we
reasoned that low-capacity performance would be
explained by noncompliance with these principles,
investigating the PPC-PFC model under the lowest
value of cpfcrec, the lowest value of cfbg , and the highest
value of cppcrec (the low-capacity configuration). In other
words, the low-capacity configuration violated the
above principles by instantiating the weakest recurrent
dynamics in PFC, the weakest feedback projections to
PPC, and the strongest recurrent dynamics in PPC.

The low-capacity configuration had a peak capacity
of k̂’ 2 items, overload of H . 0.5, and allowed all
items to be encoded by PPC (Figure 11A through C,
gray). For a range of parameter values, increasing the
strength of competition in PFC (increasing cpfcrec),
increasing the strength of feedback projections to PPC
(increasing cfbg ), and decreasing the strength of compe-

Figure 11. (A–C) Simultaneously increasing the strength of competition in PFC, increasing the strength of feedback projections to PPC

from PFC, and decreasing the strength of competition in PPC (three-parameter modulation) raised peak capacity (A) and reduced

overload (C) in a manner consistent with neural and behavioral data (see text, Stimulated cognitive control by modulation of PPC

dynamics, PFC dynamics and inter-aerial connectivity). Effective load in PFC (dotted curves in Panel B) was higher under the high-

capacity configuration (black, parameter values provided in Figure 7) than the low-capacity configuration (gray; cppcrec ¼ 1:67,
cpfcrec ¼ 2:5, cfbg ¼ 1). Three-parameter modulation was therefore inconsistent with the hypothesis that low capacity and pronounced

overload result from the encoding of too many items in PFC. (D–F) Simultaneously increasing the strength of competition in PFC,

increasing the strength of feedback projections to PPC, and fixing PPC dynamics at a moderate level (two-parameter modulation)

similarly raised peak capacity and reduced overload, but the effective load in PFC was higher under the low-capacity (gray;

cppcrec ¼ 1:11, cppcrec ¼ 2:5, and cfbg ¼ 1) configuration than under the high-capacity (black; cppcrec ¼ 1:11, cppcrec ¼ 4, and cfbg ¼ 4)

configuration (E). Two-parameter modulation was therefore consistent with the hypothesis that low capacity and pronounced

overload result from the encoding of too many items in PFC.
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tition in PPC (decreasing cppcrec ) produced very similar
results to those shown in Figure 7 (high-capacity
configurations), raising peak capacity to k̂’ 3 items,
reducing overload to close to H ¼ 0, and allowing the
encoding of all items in PPC. These results are
strikingly similar to peak capacity and overload among
low- and high-capacity subjects (cf. Fukuda, Wood-
man, & Vogel, 2015) and task conditions (cf. Chee &
Chuah, 2007; Figure 10). We do not propose a specific
trajectory through the parameter space from one
extreme to the other, but rather, we emphasize that
multiple trajectories show robustness of the computa-
tional principles identified by our simulations.

Surprisingly, under the high-capacity configurations
satisfying the criteria described in PPC modulation and
inter-aerial modulation alleviate moderate overload
and satisfy quantitative constraints (k̂.2:7, min(H) ,
0.1 and E0 . 0.9), modulation of all three parameters
(henceforth three-parameter modulation) produced an
effective load in PFC that was greater than or equal to
the effective load under the low-parameter configura-
tion (compare the black and gray dashed curves in
Figure 11B). This result does not support the hypoth-
esis that poor performance by low-capacity subjects
results from a failure to select a manageable subset of
items for storage (poor task strategy) since stimulus
encoding in PFC was at least as selective under the low-
capacity configuration as under the high-capacity
configurations. Rather, it supports the hypothesis that
low-capacity and pronounced overload reflect poor
control over frontoparietal circuitry, i.e., a relative
inability to strengthen competitive dynamics in PFC,
weaken dynamics in PPC, and enhance the functional
coupling between these regions. We therefore deter-
mined whether the simultaneous modulation of any
two parameters (two-parameter modulation, holding
the third parameter fixed) could satisfy the above
criteria, overcome a degree of overload comparable to
that of the low-capacity configuration (H ’ 0.5), and
show a lower effective load in PFC with high capacity
than with the low capacity. If so, such a configuration
would support the hypothesis that low-capacity sub-
jects are encoding too many memoranda and would
allow us to consider predictions under three- and two-
parameter modulation that might distinguish between
these two hypotheses (poor task strategy vs. poor
cognitive control). To this end, we simultaneously
decreased and increased cppcrec and cpfcrec from their highest
and lowest values respectively, while holding cfbg fixed
(at all possible values); simultaneously decreased and
increased cppcrec and cfbg from their highest and lowest
values respectively, while holding cpfcrec fixed; and
simultaneously increased cpfcrec and cfbg from their lowest
values, while holding cppcrec fixed. The first two ap-
proaches were unable to satisfy our constraints, but the
third approach was able to do so with a moderate

increase in the strength of competition in PFC, a small
increase in the strength of feedback projections, and
with PPC dynamics fixed at a moderate level (Figure
11D through F).

Simulated EEG recordings resolve conflicting hypotheses
on WM performance captured by the PPC-PFC model

Having determined that three- and two-parameter
modulation offer competing explanations for the
behavioral phenomenon of WM overload, we sought to
distinguish between these explanations by determining
their respective abilities to account for neural data from
an experimental task showing overload. To the best of
our knowledge, the only such data currently available
are the EEG recordings over parieto-occipital cortex by
Fukuda, Woodman, and Vogel (2015). Thus, we
approximated EEG recordings over PPC and lateral
PFC under three- and two-parameter modulation. To
approximate the EEG signal, we followed the approach
by McCarthy, Brown, and Kopell (2008), summing all
excitatory currents onto pyramidal neurons in each
network. Thus, we simulated the instantaneous source
amplitude of EEG over PPC by EEGppc ¼

P
j I

back;syn
j

þ
P

j I
sel
j þ

P
j I

rec
AMPA;j þ

P
j I

rec
NMDA;j þ

P
Ifbj and over

the lateral PFC by EEGpfc ¼
P

j I
back;syn
j þ

P
j I

rec
AMPA;j þP

j I
rec
NMDA;j þ

P
Iffj , where index j refers to pyramidal

neurons, currents IrecAMPA;j and IrecNMDA;j are given by

Equation 6, and currents I
back;syn
j , Iselj , Ifbj , and Iffj are

given by Equations 9, 18, 16, and 15, respectively. We
summed this instantaneous signal over the portion of
the memory delay used to determine WM performance
(the last 300 ms, Methods section, Determining
working memory performance) to obtain the total
amplitude EEGfppc;pfcg

s during this time window. Be-
cause competitive dynamics in PPC and PFC may be
modulated by different mechanisms than the scaling of
synaptic conductances used here (cppcrec and cpfcrec) and
because our EEG approximation sums the resulting
synaptic currents, we normalized the EEG approxi-
mation by its minimum and maximum values ðEEGg
¼ ½EEGs �minðEEGsÞ�=½maxðEEGsÞ �minðEEGsÞ�Þ,
predicting the qualitative form of EEG amplitude as a
function of memory load, rather than absolute
amplitude.

EEGg was qualitatively distinct during the delay
interval under three- and two-parameter modulation.
Under three-parameter modulation, EEGg was bilinear
over memory load for both networks under low- and
high-capacity configurations, where the ‘‘second line’’
of the bilinear curve had a negative slope under the
low-capacity configuration and was approximately
horizontal under the high-capacity configuration (Fig-
ure 12A). These curves are strikingly similar to the
EEG amplitude shown by Fukuda, Woodman, and
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Vogel (2015) for low- and high-capacity subjects (their
Figure 4C). Under two-parameter modulation, EEGg

was trilinear for both networks (Figure 12B) and

therefore did not account for the available EEG data.

As such, these findings are strongly supportive of the

principles of three-parameter modulation and its

corresponding hypothesis that low-capacity subjects
are indeed selecting a manageable subset of items for

storage, but that they have poor control over their

frontoparietal circuitry (corresponding to three-pa-

rameter modulation here).

To test the robustness of these results and to
facilitate a more direct comparison with the EEG data
by Fukuda, Woodman, and Vogel (2015), we calcu-
lated EEGg over longer windows at the end of the
memory delay. These authors used a 150-ms stimulus
interval and a 1-s delay interval on their task, averaging
the signals from parieto-occipital channels over the last
850 ms of the delay. We therefore calculated EEGg over
a series of increasingly longer time windows (steps of 50
ms), ranging from the last 300 ms to the last 850 ms of
the memory delay. Our results were qualitatively robust
for time windows of up to ;750 ms (not shown).

An EEG signature for hierarchical recruitment of
competition during stimulus encoding

Having shown that hierarchical recruitment of
competition during stimulus encoding accounts for
behavioral (Figures 3 and 11) and neural (Figure 12)
data from multiple-item WM tasks on which memory
load exceeds subjects’ retention abilities, we sought to
identify a measurable signature of this hypothesis. We
therefore calculated EEGg during the stimulus interval
under three-parameter modulation, having ruled out
two-parameter modulation from further consideration,
due to its inconsistency with delay-interval EEG
activity (previous section). During the stimulus inter-
val, EEGg showed greater concavity (concave down) as
a function of memory load for PFC than PPC (Figure
13) under the low- and high-capacity configurations

Figure 12. Normalized EEG approximation (EEGg, see text) for

the PPC (solid) and PFC (dotted) networks under the low-

capacity (gray) and high-capacity (black) configurations over the

last 300 ms of the memory delay (used to determine WM

performance in the model). (A) Under three-parameter

modulation, EEGg was bilinear for both networks under the

low- and high-capacity conditions, where the slope of the

‘‘second line’’ was negative under the low-capacity configura-

tion (cf. Fukuda et al., 2015). (B) Under two-parameter

modulation (PPC dynamics fixed at a moderate level, see text),

EEGg for both networks was again bilinear under the high-

capacity configuration, but was trilinear under the low-capacity

configuration.

Figure 13. Predictions by the PPC-PFC model for normalized EEG

amplitude (EEGg, see text) over PPC (solid) and lateral PFC

(dotted) for low-capacity (gray) and high-capacity (black) WM

performance during the stimulus interval. Under three-param-

eter modulation, hierarchical recruitment of competition during

stimulus encoding predicts greater concavity over PFC,

indicating earlier selection of memoranda than in PPC. The

dashed unity line highlights concavity of the curves.

Journal of Vision (2019) 19(12):8, 1–24 Standage, Paré, & Blohm 16
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alike. In this regard, concavity serves an index of the
timing of selective encoding, i.e., greater concavity
reveals earlier selection of memoranda. Thus the PPC-
PFC model makes a specific, testable prediction for our
hypothesis: EEG amplitude will show greater concavity
over memory load when recorded over lateral PFC
than when recorded over PPC during the stimulus
interval of multiple-item WM tasks.

Discussion

The storage limitations of WM have been the subject
of intense research interest for several decades (see
Luck & Vogel, 2013), but although several studies have
reported a reduction in WM capacity with high
memory load (e.g., Xu, 2007; Chee & Chuah, 2007),
WM overload has only been the focus of a handful of
behavioral experiments (Cusack et al., 2009; Linke et
al., 2011; Matsuyoshi et al., 2014; Fukuda, Woodman,
& Vogel, 2015). We investigated the neural basis of
overload with the PPC and PPC-PFC models, finding
that overload could be reduced in both models by
strong competitive dynamics during the stimulus
interval of simulated WM tasks. The PPC-only model,
however, showed a positive correlation between peak
capacity and overload (Figure 5), in opposition to
available data (Figure 3). The PPC-PFC model
accounted for these data in a parameter regime where
selective encoding was supported by strong competitive
dynamics in PFC, persistent activity was supported by
interareal projections, and weak dynamics in PPC
limited competition during the memory delay (Figure
7). As such, the model implemented hierarchical
recruitment of competition during stimulus encoding
and identified a set of computational principles for WM
storage in distributed circuitry. Under these principles,
all WM items were encoded by PPC (Figure 7B),
consistent with single-cell electrophysiological record-
ings from PPC (Thomas & Paré, 2007); simulated EEG
amplitude was bilinear over memory load during the
delay period (Figure 12A, black curves), consistent with
EEG recordings over parieto-occipital cortex (Vogel &
Machizawa, 2004; Fukuda, Woodman, & Vogel, 2015);
and peak capacity was around three items, consistent
with behavioral data from numerous WM tasks (Figure
7B; see Cowan, 2001; Luck & Vogel, 2013). When we
violated the identified principles (increased competition
in PPC, decreased strength of feedback projections and
decreased competition in PFC), peak capacity was
reduced to just over two items (Figure 11A), overload
was greater than 50% of peak capacity (Figure 11C),
and the ‘‘second line’’ of the bilinearity of simulated
EEG amplitude showed a negative slope (Figure 12A,
gray curves). These results are strikingly consistent with

behavioral and EEG data from low-capacity subjects in
the study by Fukuda, Woodman, and Vogel (2015). To
our surprise, the model implemented selective encoding
in this low-capacity regime (Figure 11B). Thus, while it
captured a strategy for WM storage under high load
and offered a set of neural mechanisms for its
implementation in hierarchical circuitry, it predicted
that low-capacity subjects are indeed attempting this
strategy and that their performance reflects poor
control of frontoparietal processing. Our hypothesis is
testable by the prediction that EEG amplitude over
memory load will show greater concavity over lateral
PFC than over PPC during the stimulus interval of
WM tasks (Figure 13), providing a neural signature of
early selection.

Limitations of our models

Our models have limitations, of course. While there
is growing support for the hypotheses that PPC is the
hub of distributed WM storage (Palva et al., 2010;
Christophel et al., 2012; Salazar et al., 2012) and that
frontoparietal interactions play a central role in
multiple-item storage (Edin et al., 2009; Palva et al.,
2010), other brain regions play important roles in WM
(see Sreenivasan, Curtis, & D’Esposito, 2014; D’Espo-
sito & Postle, 2015). Thus, we do not claim that the
PPC-PFC model and the computational principles it
identifies should explain WM overload under all
possible conditions. For example, the negative corre-
lation between peak capacity and overload that guided
our investigations (Figure 3) is common (Chee &
Chuah, 2007; Xu, 2007; Cusack et al., 2009; Linke et
al., 2011; Matsuyoshi et al., 2014; Fukuda, Woodman,
& Vogel, 2015), but not ubiquitous. These two
measures have been shown to increase together with the
duration of stimulus encoding (see Figure 4 by Cusack
et al., 2009), as well as during childhood development
(from 6–7-year-old children to college students in the
study by Cowan, Morey, AuBuchon, Zwilling, &
Gilchrist, 2010).

Another limitation of our models is that they only
consider the spatial location of memoranda, ignoring
other features and their conjunctions. In effect, our
simulations assume that everything encoded by PPC
satisfies a set of rules for selection, e.g., red squares or
blue circles. This approach is common among neural
models of WM storage (e.g., Compte, Brunel, Gold-
man-Rakic, & Wang, 2000; Tanaka, 2002; Macoveanu,
Klingberg, & Tegnér, 2006; Edin et al., 2009; Wei et al.,
2012) and is reasonable for studies addressing capacity.
While the PPC-PFC model takes an important step
toward the understanding of WM storage in distributed
circuitry, an understanding of feature-bound memo-
randa will likely require hierarchical models with
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converging feature maps (e.g., Swan & Wyble, 2014).
See Raffone and Wolters (2001) for a binding
mechanism for sequentially presented memoranda
(related models are described by Lisman & Idiart, 1995;
Jensen & Lisman, 1996). Additionally, the target
stimuli in our simulations were equidistant from one
another, which was not the case under most conditions
of the experiments providing the data to which we
compare model performance (Chee & Chuah, 2007;
Xu, 2007; Cusack et al., 2009; Linke et al., 2011;
Matsuyoshi et al., 2014; Fukuda, Woodman, & Vogel,
2015). We used equidistant targets in order to keep our
simulations as simple as possible (and our results as
interpretable as possible), bearing in mind that the
PPC-PFC model is comprised of bidirectionally cou-
pled dynamic systems. To the best of our knowledge,
ours is the first study to systematically investigate the
neural basis of WM overload, and we have focused on
its generalities across different experimental approach-
es. Future studies should investigate overload under the
specific conditions of individual experiments, including
the spatial clustering of stimuli.

Finally, our focus on WM overload inherently limits
our study to the investigation of capacity, but we do
not suggest that capacity provides the only limitation
on WM storage. There is ample evidence that the
precision of memoranda is load-dependent (e.g., Zhang
& Luck, 2008; Bays, Catalao, & Husain, 2009; van den
Berg, Shin, Chou, George, & Ma, 2012; Schneegans &
Bays, 2016). Historically, capacity and precision have
been presented as evidence for conflicting hypotheses
on the nature of WM storage (see Luck & Vogel, 2013;
Ma et al., 2014), but neural modeling studies have
begun to focus on their relationship and its neural basis
(Wei et al., 2012; Roggeman, Klingberg, Feenstra,
Compte, & Almeida, 2013; Okimura, Tanaka, Maeda,
Kato, & Mimura, 2015; Standage & Paré, 2018). We
are unaware of studies showing anything resembling
overload in relation to precision (e.g., unchanging
precision up to a critical load, followed by a decrease),
but future experiments should investigate the depen-
dence of precision on supracapacity memory load.

Persistent activity and distributed WM storage

While our simulations support the hypothesis that
interaerial projections between PPC and PFC support
persistent mnemonic activity, we do not suggest that
persistent activity is the only mechanism by which
target stimuli may be stored over a delay interval, nor
that target stimuli provide the only task-relevant
information stored by persistent activity. There is a
growing body of evidence for ‘‘state-based’’ hypotheses
of WM storage, which posit that the same neural
populations represent WM targets before and after

stimulus offset, and that attention determines their
state of activation after offset. This general principle is
supported by the ‘‘synaptic theory of WM,’’ according
to which, a nonselective signal refreshes synaptic traces
among stimulus-encoding neural populations, reacti-
vating these populations following a memory delay
(Mongillo, Barak, & Tsodyks, 2008). In this model, the
nonselective signal plays the role of attention and
short-term synaptic facilitation allows synaptic traces
to persist for around 1 s. Whether the timescales of
short-term facilitation and depression in sensory
cortices are compatible with this mechanism is debat-
able, but the model provides a compelling proof of
concept for the implementation of state-based WM
storage. There is also a growing body of evidence for
the encoding of various kinds of task-relevant infor-
mation by persistent activity, such as task rules and the
categories of memoranda (see Sreenivasan et al., 2014).
It seems unlikely that any one mechanism should
account for all aspects of a construct as broad and
nuanced as WM, and our hypothesis that hierarchical
recruitment of competition during stimulus encoding
ameliorates overload is by no means a hypothesis
against other mechanistic explanations of other data.
Quite the opposite, it offers a compatible selection
mechanism to more traditional notions of top-down
attentional signals to lower cortices (see D’Esposito &
Postle, 2015).

Along a similar vein, the computational principles of
our hierarchical model are not necessarily limited to
PPC and PFC, and may be applicable to any
bidirectionally coupled regions in the cortical hierar-
chy. While our criteria for the selection of parameter
configurations included the encoding of all target
stimuli by PPC (with a tolerance of 10%) and therefore
favored weaker, less competitive dynamics in PPC than
PFC, there is evidence that recurrent dynamics increase
in strength with hierarchical ascendancy more generally
(Murray et al., 2014). This possibility is consistent with
systematic variation in pyramidal cell morphology with
hierarchical ascendancy, such as increased spine density
and dendritic branching (Elston, 2002). In this regard,
our prediction that EEG amplitude over PPC during
stimulus encoding will show greater concavity as a
function of memory load than over PFC may serve as a
more general signature for hierarchical recruitment of
competition. Nonetheless, it is important to reiterate
that neural data from PPC provided a strong constraint
on the parameter values of the PPC-PFC model and
that the extensive body of data pointing to frontopa-
rietal involvement in WM storage (see Eriksson, Vogel,
Lansner, Bergstrom, & Nyberg, 2003; Constantinidis &
Klingberg, 2016; Christophel, Klink, Spitzer, Roelfse-
ma, & Haynes, 2017) provides good reason to ground
the model in frontoparietal areas. It is also worth
noting that spike rates in PFC were much lower than in
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PPC in the model (Figure 6), consistent with the
relative spike rates of these cortical areas in vivo (e.g.,
Swaminathan & Freedman, 2012; Murray et al., 2014).
We do not claim that PFC spike rates are low because
inhibition is stronger in PFC than in other cortical
areas (e.g., PPC) but nonetheless, we emphasize that
the PPC-PFC model is not only consistent with
behavioral (Figure 10) and EEG (Figure 12) data from
studies showing WM overload, but also with single-cell
recordings from PPC (e.g., Funahashi, Bruce, &
Goldman-Rakic, 1989; Takeda & Funahashi, 2002; M.
Wang et al., 2011) and PFC (e.g., Gnadt & Andersen,
1988; Paré & Wurtz, 1997) in nonhuman primate
studies.

Beyond local-circuit attractor models

Local-circuit attractor models (such as the PPC-only
model) have been invaluable to our understanding of
the neural basis of persistent activity on single-item
tasks (X.-J. Wang, 1999; Compte et al., 2000) and
capacity limitations on multiple-item tasks with mem-
ory loads similar to (or less than) capacity (Tanaka,
2002; Macoveanu et al., 2006). Assuming that all items
are encoded for storage, these models necessarily
produce overload when the number of memoranda
sufficiently exceeds capacity, due to the competition
between simulated neural populations (see Edin et al.,
2009, for analysis). This finding reveals a limitation of
local-circuit models of WM storage, since not all
experimental tasks, conditions, and subjects show
overload (e.g., Chee & Chuah, 2007; Xu, 2007; Cusack
et al., 2009; Fukuda, Woodman, & Vogel, 2015). The
same can be said of hierarchical models in which a top-
down control signal modulates the recurrent dynamics
of a downstream network (Edin et al., 2009; Roggeman
et al., 2013), since persistent activity is supported by
attractor dynamics in the network receiving the control
signal (Edin et al., 2009). The PPC-PFC model builds
on this work, taking a step toward an understanding of
the roles played by local circuits in distributed WM
storage. An important next step is to simulate
interareal cortical pathways in more detail, since these
pathways systematically differ according to layer,
hierarchical distance, and (presumably) function. The
structural and mechanistic differences between the
PPC-PFC model and the model by Edin et al. (2009)
are instructive in this regard. Our model emphasizes the
role of topographic interareal pathways, which run
bidirectionally in supragranular layers between hierar-
chically adjacent cortical areas (such as PPC and PFC),
but which are increasingly dominated by feedforward
(ascending) projections with greater hierarchical dis-
tance. In the model by Edin et al. (2009; see also
Roggeman et al., 2013), the top-down control signal is

spatially nonselective (diffuse), an established form of
gain modulation in local-circuit models of this class
(Salinas & Abbott, 1996; Furman & Wang, 2008;
Standage, You, Wang, & Dorris, 2013). Diffuse
pathways run bidirectionally in infragranular layers
between adjacent cortical areas, but are increasingly
dominated by feedback (descending) projections with
greater hierarchical distance, i.e., the opposite ar-
rangement to topographic pathways (see Markov &
Kennedy, 2013). Thus, our different approaches
capture fundamentally different mechanisms for con-
trol of WM storage: bottom-up recruitment by (and of)
topographic pathways and top-down control by diffuse
pathways, respectively. It seems likely that both
mechanisms are involved in WM storage. Future work
should test the predictions of our respective models,
aiming to identify the roles of different cortical areas
and their functional interactions in support of WM.

Our finding that the PPC-PFC model accounts for
the data addressed here under parameter values
supporting weak recurrent dynamics in PPC and strong
recurrent dynamics in PFC is consistent with the
findings of Murray, Jaramillo, and Wang (2017), whose
frontoparietal model accounted for experimental data
on the effects of distractor stimuli during WM storage
under these same qualitative regimes, i.e., weaker and
stronger recurrent dynamics in PPC and PFC respec-
tively. These authors further showed that the relative
strengths of recurrent dynamics in PPC and PFC
allowed their model to ameliorate a trade-off between
the computational requirements of WM and decision
making, proposing that increasingly strong recurrent
dynamics with hierarchical ascendency may be a
fundamental principle of multi-areal network compu-
tation. Like the PPC-PFC model here, the bidirec-
tional, topographic projections between their PPC and
PFC modules contrast with the unidirectional, diffuse
projections in the model by Edin et al. (2009), but
despite this difference, it is plausible that the latter
model also conforms to the principle of increasing
recurrent strength with hierarchical ascendency (see the
previous section). In particular, strong recurrent
dynamics would be required for PFC to generate a
purely top-down signal (see Standage et al., 2013), and
the nonselective nature of its projection to PPC would
alleviate the need for PFC to sustain representations of
multiple memoranda. If so, then strong, winner-take-all
dynamics in PFC would not be an impediment to
multiple-item storage in PPC.

Our omission of feedforward projections to PFC
interneurons in the PPC-PFC model points to further
open questions for distributed-network modeling. This
omission simplified our parameterization of the model
(Methods section, Parameter values), but it may have
influenced our results. Earlier studies investigating
competitive dynamics with local-circuit models have
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generally ignored feedforward inhibition, focusing on
local feedback (lateral) inhibition (e.g., X.-J. Wang,
2002; Furman & Wang, 2008; Albantakis & Deco,
2009; Standage et al., 2013), but electrophysiological
data suggest that feedforward and lateral inhibition
may play different roles in mediating competitive
dynamics (Bollimunta & Ditterich, 2012). These roles
have been investigated with more abstract computa-
tional models (see Ditterich, 2010) and future bio-
physical modeling studies should systematically
investigate the implementation of their principles.
Local-circuit models are poorly suited to the investi-
gation of feedforward inhibition during WM storage
because stimulus-selective activity is not projected to
the network during the delay interval, but this
limitation does not apply to bidirectionally coupled
networks such as the PPC-PFC model, in which
memoranda-encoding populations in each network can
project to inhibitory interneurons in the other network.
The respective roles of lateral inhibition, feedforward
inhibition, and interareal feedback inhibition in WM
storage (and distributed computation more generally)
constitute an important direction for future work.

These considerations suggest further lines of enquiry
into the computational requirements of multiple-item
WM and their implementation in distributed circuitry.
For example, our results with the PPC-only model
pointed to the selection of memoranda in PFC in the
PPC-PFC model (Results section, Competitive encod-
ing in the PPC-only model alleviates overload, but
conflicts with experimental data), but they do not imply
that selection must occur in PFC in more widely
distributed circuitry. WM overload could be prevented
if selective encoding were implemented upstream of
PFC, with PFC storing these items over a delay. Our
simulations suggest that PPC does not play this
selection role, due to its initial response to all visual
stimuli (Results section, PPC modulation and inter-
aerial modulation alleviate moderate overload and
satisfy quantitative constraints), but PFC receives
visual inputs from other brain areas (see Katsuki &
Constantinidis, 2012), one or more of which may select
items for PFC to store. Additionally, it is plausible that
normalization of the inputs to local circuity (such as in
PFC) could ameliorate overload, since total network
excitation determines the strength of lateral inhibition
onto memoranda-encoding neural populations. In
other words, if overload occurs because a larger
number of active populations creates stronger compe-
tition after stimulus offset (Edin et al., 2009), then
normalization could reduce the load-dependence of
inhibition (and thereby competition) and consequently
reduce overload. These possibilities highlight the
importance of identifying qualitatively different pre-
dictions by different models, providing a means to
distinguish between mechanistic hypotheses, the num-

ber of which grows with the number of regions
simulated in distributed networks. Future work should
investigate such mechanisms.

Our EEG approximations with the PPC-PFC model
also point to an exciting direction for future research.
In the present work, the summation of excitatory
currents onto simulated pyramidal neurons (McCarthy
et al., 2008) allowed us to approximate the instanta-
neous EEG source amplitude over PPC and PFC, but
we did not use this methodology to investigate the
possible role of oscillations in WM storage. In attractor
models with synaptic resolution, oscillations can be
controlled by the ratio of the time constants of
excitatory and inhibitory synaptic receptors (Brunel &
Wang, 2003) and therefore by the relative strengths of
AMPARs and NMDARs (e.g., Compte et al., 2000;
Buehlmann & Deco, 2008), since the time constants of
these receptors are shorter and longer respectively than
the time constant of GABARs (Table 1). In the interest
of simplicity, we purposefully avoided oscillations in
the PPC-PFC model, but bidirectionally coupled
attractor networks have been used to investigate
interaerial transmission of information in earlier
studies (e.g., Buehlmann & Deco, 2010), suggesting that
our hierarchical model and simulation paradigm are
ideal for investigating the mechanisms by which
synchronized (Palva et al., 2010) and desynchronized
(Fukuda, Mance, & Vogel, 2015; Fukuda, Kang, &
Woodman, 2016) oscillations may contribute to WM
storage, and the relationships between these EEG data
and oscillations in local field potentials during WM
tasks (Lundqvist et al., 2016; Lundqvist, Herman,
Warden, Brincat, & Miller, 2018).

Conclusions

The real-world phenomenon of WM overload has
long been of concern to educators (Sweller, 1988), who
have identified the need for a stronger scientific
foundation for pedagogic strategies aiming to prevent
its occurrence in the classroom (Schnotz & Kurschner,
2007; de Jong, 2010). Nonetheless, despite intense
research interest in the storage limitations of WM more
generally (see Luck & Vogel, 2013), only a handful of
studies have specifically investigated overload (Cusack
et al., 2009; Linke et al., 2011; Matsuyoshi et al., 2014;
Fukuda, Woodman, & Vogel, 2015), and to the best of
our knowledge, no previous study has investigated its
mechanistic basis. Our findings point to cognitive
control as the source of differential WM performance
across subject groups, rather than capacity per se. This
finding is consistent with recent experimental work
emphasizing strategic ability as the source of high
performance on WM tasks and on tests of cognitive
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ability more generally (Cusack et al., 2009; Linke et al.,
2011). Given the strong correlation between capacity
and scores on intelligence tests (see Unsworth et al.,
2014), we believe this message is a positive one, though
our findings do not suggest that capacity can neces-
sarily be improved by simple strategic adjustments.
Rather, they suggest that individuals with better
control of distributed cortical processing are better
positioned to implement effective strategies. Significant
research investment will be required to identify ways to
improve this control. Our predictions for experimental
testing are a step in this direction.

Keywords: working memory storage, visual short term
memory, working memory overload, biophysical model,
frontoparietal model
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Footnote

1 The effective load for the strongest recurrent
dynamics in the PPC-only model (highest value of crec

ppc,
darkest red curves in Figure 5) is less than capacity in
some load conditions (i.e., E[n] , K[n]; Figure 5A and
B). This seeming anomaly reflects the later onset of
stimulus-selective activity with such strong recurrent
dynamics, where the rate of item-encoding activity
(calculated over the full stimulus interval) is too low to
satisfy our criteria for encoded items. This effect can be
seen in Figure 2, where the onset of item-encoding
activity occurs later with higher cppcrec :
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Downloaded from jov.arvojournals.org on 10/17/2019



capability impairs decision making in a biophysical
network model. Neural Networks, 24, 1062–1073.
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