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Standage D, Paré M. Slot-like capacity and resource-like coding
in a neural model of multiple-item working memory. J Neurophysiol
120: 1945–1961, 2018. First published June 27, 2018; doi:10.1152/
jn.00778.2017.—For the past decade, research on the storage limita-
tions of working memory has been dominated by two fundamentally
different hypotheses. On the one hand, the contents of working
memory may be stored in a limited number of “slots,” each with a
fixed resolution. On the other hand, any number of items may be
stored but with decreasing resolution. These two hypotheses have
been invaluable in characterizing the computational structure of work-
ing memory, but neither provides a complete account of the available
experimental data or speaks to the neural basis of the limitations it
characterizes. To address these shortcomings, we simulated a multi-
ple-item working memory task with a cortical network model, the
cellular resolution of which allowed us to quantify the coding fidelity
of memoranda as a function of memory load, as measured by the
discriminability, regularity, and reliability of simulated neural spiking.
Our simulations account for a wealth of neural and behavioral data
from human and nonhuman primate studies, and they demonstrate that
feedback inhibition lowers both capacity and coding fidelity. Because
the strength of inhibition scales with the number of items stored by the
network, increasing this number progressively lowers fidelity until
capacity is reached. Crucially, the model makes specific, testable
predictions for neural activity on multiple-item working memory
tasks.

NEW & NOTEWORTHY Working memory is the ability to keep
information in mind and is fundamental to cognition. It is actively
debated whether the storage limitations of working memory reflect a
small number of storage units (slots) or a decrease in coding resolu-
tion as a limited resource is allocated to more items. In a cortical
model, we found that slot-like capacity and resource-like neural
coding resulted from the same mechanism, offering an integrated
explanation for storage limitations.

biophysically based model; working memory; working memory ca-
pacity; working memory precision; working memory storage

INTRODUCTION

Working memory refers to the retention of information
for use in cognitive tasks over intervals on the order of
seconds. Visual working memory (WM) is a particularly
active research field, largely because the high precision of
the visual system affords fine-grained measurements that

address the storage limitations of WM. These limitations are
highly correlated with measures of intelligence and are
currently the subject of intense research interest (see Luck
and Vogel 2013).

For several decades, research on storage limitations was
dominated by the hypothesis that WM is supported by a
small number of discrete “slots.” According to this hypoth-
esis, information is either stored with high precision in a slot
or simply not encoded if the number of items n exceeds the
number of slots (see Cowan 2001). More recently, evidence
has emerged for an alternative hypothesis, according to
which a limited “resource” R is allocated to n items, with no
limit on n. Accordingly, the precision of WM representa-
tions decreases with increasing n, since less resource is
available for the encoding of each item, i.e., precision tracks
R/n. Thus the nature of WM storage limitations is funda-
mentally different under the slot and resource hypotheses,
attributing constraints to capacity and resolution, respec-
tively. It is increasingly clear, however, that neither is
complete (see Luck and Vogel 2013; Ma et al. 2014).
Generally, the slot hypothesis (Slot) is overconstrained with
respect to resolution, since it does not account for a gradual
decrease in precision with increasing n (Bays et al. 2009;
Schneegans and Bays 2016). Equally, the resource hypoth-
esis (Resource) is overconstrained with respect to capacity,
since it does not account for a plateau in imprecision with a
critical number of items, where this number appears to
correspond to capacity (Zhang and Luck 2008). Conse-
quently, several hybrid hypotheses have been presented,
accounting for data that cannot be explained by Slot or
Resource alone (van den Berg et al. 2012; Zhang and Luck
2008).

The above work has been invaluable in characterizing the
storage limitations of WM but does not speak to its neural
basis. WM is widely believed to be supported by “attractor
states” in neocortex, emerging from recurrent excitation and
feedback inhibition in local circuits. Under this framework,
recurrent excitation sustains neural firing in the absence of
driving stimuli (persistent activity), while feedback inhibi-
tion prevents this activity from running away (see Wang
2001). If R is instantiated by the cortical tissue mediating a
task-relevant feature domain, e.g., spatial location, then
feedback inhibition necessarily constrains capacity, since
WM items will compete for representational space (see
Franconeri et al. 2013). If so, R cannot be infinitely divisi-
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ble. Rather, it will be allocated to n ! K items, with capacity
K determined by the properties of feedback inhibition, e.g.,
its strength and breadth. In other words, the simultaneous
encoding of an arbitrary number of WM items is incompat-
ible with feedback inhibition between stimulus-selective
neural populations, a fundamental principle of neural infor-
mation processing. The application of these principles to
Resource leads to a strong hypothesis: a decrease in preci-
sion with increased memory load must be limited by capac-
ity.

Here we test this hypothesis with a biophysically based
model of a local circuit in posterior parietal cortex (PPC), a
cortical area extensively correlated with WM (Christophel
et al. 2012; Gnadt and Andersen 1988; Palva et al. 2010;
Salazar et al. 2012; Todd and Marois 2004). Previous
studies have used similar models to offer mechanistic ex-
planations for capacity (Edin et al. 2009), precision
(Almeida et al. 2015), and their relationship (Roggeman et
al. 2014; Wei et al. 2012), but these studies did not explain
precision under the principles of Resource. Rather, they
equated imprecision with the “drift” of item-encoding neu-
ral populations in cortical tissue. As such, they make pre-
dictions different from those of our model (see DISCUSSION).
According to Resource, imprecision reflects the signal-to-
noise ratio (SNR) of neural representations. We extend this
hypothesis from SNR to coding fidelity more generally,
measuring the regularity and reliability of simulated spiking
activity. In doing so, we demonstrate and explain the dete-
rioration of coding fidelity with increasing n under estab-
lished statistical measures, where this deterioration levels
off at a critical n. Thus we offer a novel explanation for
resource-like coding and its relationship with capacity, uni-
fying a large body of neural and behavioral data and making
specific predictions for experimental testing.

METHODS

Our local-circuit PPC model is a network of simulated pyramidal
neurons and inhibitory interneurons, connected by AMPA (AMPAR),
NMDA (NMDAR), and GABA (GABAR) receptor conductance syn-
apses (Fig. 1A). Synaptic connectivity within and between classes of
neuron was structured according to in vitro data, including structured
and unstructured components of the connectivity to pyramidal neu-
rons from interneurons (Fig. 1B; see Parameter Values). We refer to
the former and latter components as local and broad inhibition,
respectively.

We ran simulations of two common visual and WM tasks, a
visually guided delayed saccade task (the visual task) and a
memory-guided delayed-saccade task (the memory task) (e.g., Paré
and Wurtz 1997). Each task consists of three intervals: a pretrial
interval, a stimulus interval, and a delay interval. After the pretrial
interval, items are presented during the stimulus interval on both
tasks, remaining present during the delay interval on the visual task
but not the memory task (Fig. 1C). We constrained the model by
setting its parameter values according to anatomical and physio-
logical data (see Parameter Values) and by stipulating that it must
qualitatively reproduce signature neural data from PPC (see
RESULTS; Fig. 2). We then measured its storage capacity and coding
fidelity as a function of n. Capacity was defined as the mean
number of accurately encoded items during the last 300 ms of the
delay interval (the statistics window), where accurate encoding
was determined by the rate, position (relative to stimulus position),
and discriminability of item-encoding populations. We used three

standard measures of coding fidelity: the SNR of stimulus-selec-
tive spiking, the coefficient of variation (CV) of interspike inter-
vals (ISIs), and the Fano factor (FF) of between-trial spike counts.
SNR quantifies the degree to which selective spiking is discrim-
inable from baseline activity, while CV and FF quantify the
within-trial regularity and between-trial reliability of spiking, re-
spectively.

The Network Model

The local-circuit model is a fully connected network of leaky
integrate-and-fire neurons (Tuckwell 1988), comprised of Np ! 400
simulated pyramidal neurons and Ni ! Np⁄4 fast-spiking inhibitory
interneurons (putative basket cells). Each model neuron is described
by

Cm
!p,i"dV

dt
" #gL

!p,i"(V # EL
!p,i") # I (1)

where Cm is the membrane capacitance of the neuron, gL is the
leakage conductance, V is the membrane potential, EL is the equilib-
rium potential, and I is the total input current. When V reaches a
threshold $v, it is reset to Vres, after which it is unresponsive to its
input for an absolute refractory period of %ref. Here and below,
superscripts p and i refer to pyramidal neurons and interneurons,
respectively, indicating that parameter values are assigned separately
to each class of neuron.

The total input current at each neuron is given by

I " Isel & Irec & Iback (2)

where Isel is stimulus-selective synaptic current (set to 0 for interneu-
rons), Irec is recurrent (intrinsic) synaptic current, and Iback is back-
ground current. Isel and Irec are comprised of synaptic currents, and
Iback is comprised of synaptic current and injected current. Synaptic
currents driven by pyramidal neuron spiking are mediated by simu-
lated AMPAR and/or NMDAR conductances, and synaptic currents
driven by interneuron spiking are mediated by simulated GABAR
conductances. For AMPAR and GABAR currents, synaptic activation
(the proportion of open channels) is defined by

dgAMPA
a

dt
" #

gAMPA
a

%AMPA
!p,i" & '(t # tf)

dgGABA
a

dt
" #

gGABA
a

%GABA
!p,i" & '(t # tf)

(3)

where %AMPA and %GABA are the time constants of AMPAR and
GABAR deactivation respectively, ' is the Dirac delta function, tf is
the time of firing of a presynaptic neuron and superscript a indicates
that synapses are activated by different sources of spiking activity
(selective, recurrent, and background). NMDAR activation has a
slower rise and decay and is described by

dgNMDA
a

dt
" #

gNMDA
a

%NMDA
!p,i" & (NMDA · )NMDA(1 # gNMDA

a ) (4)

where %NMDA is the time constant of receptor deactivation and
(NMDA controls the saturation of NMDAR channels at high pre-
synaptic spike frequencies. The slower opening of NMDAR chan-
nels is captured by

d)NMDA

dt
" #

)NMDA

%)

& '(t # tf) (5)

where %) determines the rate of channel opening.
Intrinsic (recurrent, local feedback) synaptic current to each neuron

j is defined by
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Ij
rec " IAMPA,j

rec & INMDA,j
rec & IGABA,j

rec

IAMPA,j
rec " #

k

GAMPA
!p,i"

*g
· gAMPA,k

rec (Vj # VE) · Wj,k
rec | pp,ip

INMDA,j
rec " #

k

GNMDA
!p,i"

*g
· gNMDA,k

rec (Vj # VE) · + j · Wj,k
rec | pp,ip

IGABA,j
rec " #

k

GGABA
!p,i"

*g
· gGABA,k

rec (Vj # VI) · Wj,k
rec | pi,ii

(6)

where *g is a scale factor controlling the relative strength of extrinsic
and intrinsic synaptic conductance; GAMPA, GNMDA, and GGABA are
the respective strengths of AMPAR, NMDAR, and GABAR conduc-
tance; VE is the reversal potential for AMPARs and NMDARs, and VI

is the reversal potential for GABARs; gAMPA,k
rec , gNMDA,k

rec , and gGABA,k
rec

are the activation of AMPAR, NMDAR, and GABAR receptors,

respectively, by presynaptic neurons k; + governs the voltage depen-
dence of NMDARs; and matrices Wrec | pp,ip and Wrec | pi,ii scale con-
ductance strength or weight according to the connectivity structure of
the network. This structure depends on the class of neuron receiving
and projecting spiking activity, where superscripts pp, ip, pi, and ii
denote connections to pyramidal neurons from pyramidal neurons, to
interneurons from pyramidal neurons, to pyramidal neurons from
interneurons, and to interneurons from interneurons, respectively. For
each of these structures s ! {pp, ip, pi, ii}, Wrec | s is a Gaussian
function of the distance between periodically arranged neurons, where
the weight Wj,k

rec | s to neuron j from neuron k is given by

Wj,k
rec , s " e#d2 ⁄ 2-rec , s

2
· (1 # .rec , s) & .rec , s (7)

The distance between neurons is defined by d ! min(|j " k|#xp,
2/ " |j " k|#xp) for Wrec | pp, d ! min(|j " k|#xi, 2/ " |j " k|#xi) for
Wrec | ii, d ! min(|j " zpi|#xp, 2/ " |j " zpi|#xp) for Wrec | pi, and
d ! min(|j " zip|#xi, 2/ " |j " zip|#xi) for Wrec | ip, with scale factors
#xp ! 2//Np and #xi ! 2//Ni. For Wrec | pi and Wrec | ip, zpi ! Np/
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Fig. 1. Local-circuit posterior parietal cortex (PPC) model and simulated tasks. A: schematic of the model. Solid circles depict pyramidal neurons (green) and
inhibitory interneurons (red), arranged periodically by their connectivity structures. The 4-to-1 ratio of pyramidal neurons to interneurons preserves their
population sizes in the model. Arced and straight arrows depict synaptic connectivity within and between classes of neuron, respectively. Thin Gaussian curves
depict the structure of this connectivity (within, solid; between, dotted). The thick Gaussian curve depicts the response field of a pyramidal neuron. Red arrows
depict GABA receptor (GABAR) synapses, thin green arrow depicts AMPA receptor (AMPAR)-only synapses, and wide green arrow depicts synapses with
AMPARs and NMDA receptors (NMDARs). B: approximation of synaptic connections onto pyramidal neurons and interneurons from small, medium, and large
basket cells (SBC, MBC, and LBC respectively). Rectangles depict unstructured connectivity within each class of cell and onto pyramidal neurons from each
class. Red curve approximates their combined structure. C, top: the visual and memory tasks are comprised of a pretrial interval, a stimulus interval, and a delay
interval. Spiking statistics are taken during the last 300 ms of the delay interval, referred to as the statistics window. Stimulus onset follows a 50-ms visual
response delay. On the visual (memory) task, stimuli persist (do not persist) throughout the delay interval, depicted by the dashed horizontal line. The decaying
input signal simulates upstream response adaptation. Middle and bottom: example trial of the 1-item memory task. Middle: in the raster plot, pyramidal neurons
and interneurons are indexed from 1 to 400 and from 401 to 500, respectively. Mean spike density function (SDF; see text) over all pyramidal neurons and
interneurons during the statistics window is shown on right. Bottom: mean SDF over the item-encoding pyramidal population. D: synaptic currents onto a
pyramidal neuron (solid) and an interneuron (dotted) during the delay interval of the 1-item memory task. Red, green, and black curves show GABAR, AMPAR,
and NMDAR currents, respectively. E: membrane potential of a pyramidal neuron and an interneuron during the pretrial interval. F: mean rate over all pyramidal
neurons during the statistics window of correct trials on the memory task for each value of control parameter *rec ! 1/*g (see text).
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Ni $ k and zip ! Ni/Np $ k, respectively. Parameter -rec | s determines
the spatial extent of connectivity, and parameter .rec | s allows the
inclusion of a baseline weight, with the function normalized to a
maximum of 1 (0 ! .rec | s % 1).

Background Activity

For each neuron, in vivo cortical background activity is simulated
by current Iback, defined by

Iback " Iback,syn & Iback,inj (8)

where Iback,syn is driven by synaptic bombardment and Iback,inj is noisy
current injection. The former is generated by AMPAR synaptic
activation, where independent, homogeneous Poisson spike trains are
provided to all neurons at rate 0back. Iback,syn is therefore defined by

Iback,syn " *g · 1 · GAMPA
!p,i" · gAMPA

back (V # VE) (9)

where 1 is a scale factor and gAMPA
back is given in Eq. 3.

For Iback,inj, we used the point-conductance model by Destexhe et
al. (2001):

Iback,inj " ge(t)(V # VE) & gi(t)(V # VI) (10)

The time-dependent excitatory and inhibitory conductances ge(t)
and gi(t) are updated at each timestep #t according to

ge(t & 2t) " g0e & [ge(t) # g0e] · e#2t⁄%e & Aeϒ (11)

and

gi(t & 2t) " g0i & [gi(t) # g0i] · e#2t⁄%i & Aiϒ (12)

respectively, where g0e and g0i are average conductances, %e and %i
are time constants, and ϒ is normally distributed random noise with 0
mean and unit standard deviation. Amplitude coefficients Ae and Ai
are defined by

Ae "$De%e

2 %1 # exp&#22t

%e
'( (13)

and

Ai "$Di%i

2 %1 # exp&#22t

%i
'( (14)

respectively, where De " 2-e
2 ⁄%e and Di " 2-i

2⁄%i are noise “diffusion”
coefficients. See Destexhe et al. (2001) for the derivation of these
equations.

Experimental Design and Statistical Analysis

Simulated experimental tasks. We simulated the target stimuli in
both tasks by providing independent, homogeneous Poisson spike
trains to all pyramidal neurons j in the network, where spike rates
were drawn from a normal distribution with mean 0sel corresponding
to the center of a Gaussian response field (RF) defined by Wj,k

rf "
exp)# d2 ⁄2-rf

2 *. Constant d is given above for recurrent synaptic
structure Wrec | pp, -rf determines the width of the RF, and subscript k
indexes the neuron at the RF center. Spike response adaptation by
upstream visually responsive neurons was modeled by a step-and-
decay function

0sel(t) " +(0init # 0init ⁄ 0div)e
#(t#tvrd) ⁄ %0 & 0init ⁄ 0div for t 3 tvrd

0 for t ! tvrd
(15)

where 0init determines the initial spike rate, 0div determines the
asymptotic rate, %0 determines the rate of upstream response adapta-
tion, and tvrd is a visual response delay. We simulated the visual task
by providing these selective spike trains for 1,300 ms, following the
300-ms pretrial interval. We simulated the memory task by providing
the selective spike trains for 300 ms, following the pretrial interval
and followed by a 1,000-ms delay (Fig. 1C). The stimuli were
mediated by AMPARs only, so for all pyramidal neurons j in the PPC
network,

Ij
sel " *g · 1 · GAMPA

p · gAMPA,j
sel (Vj # VE) · Wj,k

rf (16)

All simulations were run with the standard implementation of Euler’s
forward method, where the timestep was #t ! 0.25 ms.

Values of model parameters are provided in Table 1 and justified in
Parameter Values.

Determining working memory performance. We ran 400 trials of
the visual and memory tasks with 1–5 stimuli (henceforth the n-item
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Fig. 2. The model qualitatively reproduces
signature neural data recorded from poste-
rior parietal cortex (PPC) during 1-item vi-
sual and memory tasks and multiple-item
visual tasks. A: mean activity at the response
field (RF) center of the item-encoding pop-
ulation on the 1-item visual task for each
value of control parameter *rec ! 1/*g (each
gain condition, see text). Darker shades cor-
respond to higher *rec. B: mean activity at
the RF center on the 1-item memory task. C:
mean activity at the RF center of a single
item-encoding population on the n-item vi-
sual task for all n (1 ! n ! 5). Results are
shown for the highest-gain condition. Thick
horizontal bars at top of A–C show the tim-
ing of the target stimuli. D–F: persistent
activity in the model encodes a low-fidelity
representation of an earlier stimulus, charac-
terized by a lower signal-to-noise ratio
(SNR; D), higher coefficient of variation
(CV; E), and higher Fano factor (FF; F)
during the memory delay than during the
visual delay. Error bars show SE. Results are
shown for the lowest-gain condition.
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visual and memory tasks; 1 ! n ! 5). To determine WM performance
on each trial of the memory task, spike density functions (SDFs) were
calculated for all pyramidal neurons in the network by convolving
their spike trains with a rise-and-decay function

(1 # e#t⁄%f) · e#t⁄%d

%d
2

%r & %d

(17)

where t is the time after stimulus onset and %r ! 1 ms and %d ! 20 ms
are the time constants of rise and decay, respectively (Standage and
Paré 2011; Thompson et al. 1996). On each n-item trial, we calculated
the mean of the SDFs over the last 300 ms of the delay, obtaining the
average activity over the network, and then partitioned the network
into n equal regions. The location of each item was centered within
each region. We then fit the mean activity in each region with a
Gaussian function with four parameters: the height of the peak, the
position of the peak, the standard deviation (SD) (controlling width),
and the height that is approached asymptotically from the peak. An
item was considered accurately stored if the fitted Gaussian satisfied
three criteria: the height parameter exceeded 30 Hz, the difference
between the height and the fitted asymptote on both sides of the peak
exceeded 15 Hz, and the position parameter was within #c ! 10° of
the center of the RF for that item. For the first criterion, we chose 30
Hz because this spike rate implies ~10 spikes during the 300-ms
statistics window, as required to faithfully calculate CV and FF
(Nawrot 2010). The second criterion dictates that items are only
considered accurately stored if the population response is discrim-

inable. The third criterion ensures that the memory of the location of
the item is close to the actual location, the precise value of which was
not crucial to our results (#c & ~5).

Calculating spiking statistics. We selected m ! 20 simulated
pyramidal neurons from the network (the target neurons) and
recorded their activity on m trials each. This population of neurons
consisted of the neuron at the center of the RF for a given target
and the m – 1 neurons closest to the RF center. For each of the two
tasks, the SNR of each target neuron was calculated on each trial
by subtracting the spike count during the 300-ms pretrial interval
from the spike count during the statistics window and dividing the
result by the latter [SNR ! (SCdel " SCpre)/SCpre, where SC is the
spike count].

The CV of ISI was calculated for each target neuron on each trial
by dividing the mean ISI by the SD of ISI during the statistics window
(CV " -del

ISI ⁄ 0del
ISI). The FF was calculated for each target neuron by

recording the spike count during the statistics window on each trial
and dividing the variance by the mean over all trials for that neuron
(FF " -del

SC2
⁄ 0del

SC). These statistics were only calculated for accurately
stored items and from neurons that emitted at least 9 spikes during the
300-ms statistics window (30 Hz; see Determining working memory
performance). To increase statistical power on memory trials with n &
1 items, if the network did not accurately store the “first” item we
searched for a corresponding neuron in another item-encoding
population, where correspondence was determined relative to the
RF center, e.g., if the target neuron was located 3 indices below
the RF center of item 1, we used a neuron located 3 indices below

Table 1. Model parameters

Parameter Pyramidal Neurons Interneurons Description

Cm 0.5 nF 0.2 nF Membrane capacitance
gL 25 nS 20 nS Leakage conductance
EL –70 mV –70 mV Leakage equilibrium potential
$v –50 mV –50 mV Spike threshold
Vres –60 mV –60 mV Reset potential
%ref 2 ms 1 ms Absolute refractory period
VE 0 mV 0 mV Reversal potential for AMPARs and NMDARs
VI –70 mV –70 mV Reversal potential for GABARs
%) 2 ms 2 ms Time constant of channel opening for NMDARs
(NMDA 0.5 kHz 0.5 kHz Saturation of NMDAR channels
Mg 1 mM 1 mM Extracellular magnesium concentration
GAMPA 0.2 nS 0.4 nS Conductance strength of AMPARs
GNMDA 4 nS 2 nS Conductance strength of NMDARs
GGABA 1.5 nS 0.75 nS Conductance strength of GABARs
%AMPA 4 ms 2 ms Time constant of deactivation of AMPARs
%NMDA 100 ms 50 ms Time constant of deactivation of NMDARs
%GABA 10 ms 10 ms Time constant of deactivation of GABARs
-rec | pp,ip 0.2 0.2 Width of connectivity from pyramidal neurons
-rec | pi,ii 0.4 0.4 Width of connectivity from interneurons
.rec | pp,ip 0 0 Unstructured connectivity from pyramidal neurons
.rec | pi,ii 1/3 1/3 Unstructured connectivity from interneurons
g0e 2.5 nS 2.5 nS Average exc. background conductance
g0i 12.5 nS 12.5 nS Average inh. background conductance
%e 2.5 ms 2.5 ms Time constant of exc. background conductance
%i 10 ms 10 ms Time constant of inh. background conductance
-e 5 nS 5 nS Standard deviation of exc. diffusion coefficient
-i 12.5 nS 12.5 nS Standard deviation of inh. diffusion coefficient
-rf 0.1 Width of response fields
0init 10,000/*g Hz Initial (aggregate) spike rate to RF center
0div 10 Divisor for upstream response adaptation
%0 50 ms Time constant of upstream response adaptation
tvrd 50 ms Visual response delay
*g 0.45–0.65 0.45–0.65 Control parameter determining gain condition
*rec 1/*g 1/*g Inverse of control parameter

Synaptic connectivity parameters (pp, ip, pi, ii, where p indicates pyramidal neuron and i indicates interneuron) are indexed to a receiving neuron from a
transmitting neuron. AMPAR, AMPA receptor; NMDAR, NMDA receptor; GABAR, GABA receptor; exc, excitatory; inh, inhibitory; RF, response field. See
Parameter Values.
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the RF center of another item. If no items were accurately stored,
the trial was discarded for statistical purposes.

Parameter Values

In setting parameter values in the model, our aim was to justify
every value by anatomical and physiological data, thus constraining
our choices as much as possible, and then to use a single control
parameter to explore the model’s performance and spiking statistics
on the visual and memory tasks. Our control parameter was *g (Eqs.
6, 9, and 16), governing the relative strengths of extrinsic and intrinsic
synaptic conductance and therefore the strength of recurrent process-
ing.

For cellular parameters, we used standard values for integrate-and-
fire neurons in cortical simulations (Compte et al. 2000), justified by
electrophysiological data in earlier related work (Troyer and Miller
1997; Wang 1999). These values are Cm

p ! 0.5 nF, gL
p ! 25 nS,

EL
p ! "70 mV, $v

p ! "50 mV, Vres
p ! "60 mV, and %ref

p ! 2 ms and
Cm

i ! 0.2 nF, gL
i ! 20 nS, EL

i ! "70 mV, $v
i ! "50 mV, Vres

i ! "60
mV, and %ref

i ! 1 ms. Likewise, synaptic reversal potentials are
VE ! 0 mV and VI ! –70 mV, and the parameters governing the
opening and saturation of NMDARs are %) ! 2 ms and (NMDA ! 0.5
kHz, respectively (Compte et al. 2000). The voltage dependence of
NMDARs is given by + ! 1/[1 ' Mg · exp("0.062 · V)/3.57], where
Mg ! 1 mM is the extracellular magnesium concentration and V is
measured in millivolts (Jahr and Stevens 1990).

In setting parameters for the conductance strengths and time
constants of decay of AMPARs and NMDARs, we followed Standage
et al. (2013), emphasizing fast inhibitory recruitment in response to
slower excitation (see Povysheva et al. 2006 for discussion). For
AMPARs GAMPA

p ! 0.2 nS, GAMPA
i " 2GAMPA

p , %AMPA
p ! 4 ms, and

%AMPA
i " %AMPA

p ⁄ 2, and for NMDARs GNMDA
p ! 4 nS, GNMDA

i "
GNMDA

p ⁄ 2, %NMDA
p ! 100 ms, and %NMDA

i " %NMDA
p ⁄ 2. These values

produce fast-decaying AMPAR currents on the order of 10 pA
(Angulo et al. 1999; Desai et al. 2002) that are stronger and shorter
lived onto inhibitory interneurons than onto pyramidal neurons (Hes-
trin 1993; Hull et al. 2009; McBain and Fisahn 2001) and slow-
decaying NMDAR currents on the order of 10 pA (Angulo et al. 1999;
Berretta and Jones 1996) that are stronger and longer lived at synapses
onto pyramidal neurons than onto inhibitory interneurons (Hull et al.
2009). For GABARs, GGABA

p ! 1.5 nS and GGABA
i " GGABA

p ⁄2,
producing GABAR currents several times stronger than the above
excitatory currents, where the stronger conductance at synapses onto
pyramidal neurons captures their greater prevalence of GABARs
(Markram et al. 2004). GABAR time constants were set to
%GABA

p " %GABA
i ! 10 ms (Salin and Prince 1996; Xiang et al. 1998).

Example synaptic currents are shown in Fig. 1D.
The connectivity structures Wrec | pp,ip,pi,ii capture the probability of

lateral synaptic contact within and between classes of neurons in local
cortical circuitry (Somers et al. 1995; Wilson and Cowan 1973). A
considerable volume of data indicates that the probability of lateral
synaptic contact between cortical pyramidal neurons is normally
distributed with mean 0 and half-width of ~0.25 mm (Berger et al.
2009; Hellwig 2000; Voges et al. 2010). Thus -rec | pp corresponds to
0.25 mm, determining the size of the cortical region being modeled,
and .rec | pp ! 0. We are unaware of any data suggesting that the
lateral projections of pyramidal neurons target basket cells differently
than they target other pyramidal neurons, so we set -rec | ip ! -rec | pp
and .rec | ip ! .rec | pp. Arguably, -rec | ip should be narrower than
-rec | pp, since the dendritic trees of basket cells are less extensive than
those of pyramidal neurons, but setting these parameters to equal
values supported more stable network dynamics, i.e., it furnished
sufficient local-circuit inhibition for the model to simulate the exper-
imental tasks without modifications to other parameter values.

For connectivity structures Wrec | pi,ii, values for -rec | pi,ii and
.rec | pi,ii are justified by four premises: first, we assume that basket

cells are a major source of lateral inhibition (Krimer and Goldman-
Rakic 2001), and we limit our focus to this class of inhibitory
interneuron; second, basket cells synapse onto the somatic and peri-
somatic regions of their targets (see Markram et al. 2004); third, the
axons of basket cells contact their targets indiscriminately throughout
the range of their ramifications (Packer and Yuste 2011); and fourth,
the basket cell population can be divided into small (local arbor),
medium (medium arbor), and large (wide arbor) cells in equal pro-
portion, i.e., one-third each (Krimer et al. 2005). Under the first and
second premises, we do not need to consider the dendritic morphology
of the targets of inhibitory interneurons. Under the second and third
premises, we assume a uniform synaptic distribution for inhibitory
targets, where the axonal ramifications of small, medium, and large
basket cells cover progressively larger areas (Krimer et al. 2005;
Krimer and Goldman-Rakic 2001), with large basket cells (LBCs)
covering the entire local circuit (Kisvárday et al. 1993; Markram et al.
2004). We therefore approximate this connectivity structure by setting
-rec | pi ! -rec | ii ! 2-rec | pp and .rec | pi ! .rec | ii ! 1/3, where the
former corresponds to a half-width of ~0.5 mm (cf. Kisvárday et al.
1993; Krimer et al. 2005; Krimer and Goldman-Rakic 2001) and the
latter refers to the 1/3 proportion of LBCs. This approach to deter-
mining inhibitory connectivity parameters is depicted in Fig. 1B. We
set -rec | pp ! 0.2 because this value supported the simultaneous rep-
resentation of 5 simulated visual stimuli, corresponding to the upper
limit on human WM capacity, i.e., 4 ( 1 items (Cowan 2001; Luck
and Vogel 1997). Finally, we set -rec | ii ! -rec | pi because LBCs make
extensive contacts onto one another over the full range of their axonal
ramifications (Kisvárday et al. 1993). Note that we do not attribute
biological significance to the spatial periodicity of the network.
Rather, this arrangement allows the implementation of Wrec | pp,ip,pi,ii

with all-to-all connectivity without biases due to asymmetric lateral
interactions between neurons and further captures the topographic
mapping of spatially periodic stimuli in many visual (e.g., Thomas
and Paré 2007) and WM (e.g., Funahashi et al. 1989; Matsuyoshi et al.
2014) tasks. In Broad Feedback Inhibition Underlies Slot-Like Ca-
pacity and Resource-Like Coding, we describe simulations with al-
ternative configurations of inhibitory connectivity by varying .rec | pi,ii.
In all cases, we retained the total conductance strength of inhibitory
synapses onto pyramidal neurons by multiplying GGABA

p by
#Walt

rec | pi ⁄#Wdef
rec | pi, where alt refers to a given alternative configura-

tion and def refers to the “default” configuration described above.
Similarly, we retained the total conductance strength of inhibit-
ory synapses onto interneurons by multiplying GGABA

i by #Walt
rec | ii ⁄

#Wdef
rec | ii. In other words, we normalized feedback inhibition accord-

ing to the area under Wrec | pi,ii.
In setting parameter values for background activity in each net-

work, we initially omitted background synaptic input Iback,syn and
followed the data by Fellous et al. (2003) to produce Iback,inj, where
g0e ! 5 nS and g0i ! 25 nS, %e ! 2.5 ms, %i ! 10 ms, -e ! 5 nS, and
-i ! 12.5 nS. Because the average inhibitory background conduc-
tance g0i is five times the average excitatory background conductance
g0e (see Destexhe 2010), our simulated pyramidal neurons did not
respond adequately to selective stimuli under these parameter values.
We therefore reduced the average conductances by a factor of 2,
setting g0e ! 2.5 nS, retaining the ratio of inhibitory to excitatory
conductance strength g0i ! 5·g0e ! 12.5 nS, and simulating the
“other half” of upstream cortical background activity by providing
independent, homogeneous Poisson spike trains to all neurons in the
network. As such, we assumed that each neuron forms ~10,000
synapses with upstream cortical neurons (Douglas et al. 2004) and that
by dividing g0e and g0i by 2 we were effectively omitting ~5,000
background inputs. We therefore approximated 5,000 upstream cor-
tical neurons firing at 1 Hz each by setting the rate of background
Poisson spike trains to 0back ! 500 Hz and setting the extrinsic
synaptic scale factor to 1 ! 10, trading temporal summation for
spatial summation (Prescott and De Koninck 2003; Standage et al.
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2013). As noted above, background spike trains were provided to all
pyramidal neurons and interneurons in each network, mediated by
AMPARs on the assumption that spike trains converging on PPC (an
association cortical area) are predominantly ascending. Evidence for
AMPAR-mediated ascending activity is provided by Self et al. (2012).
This approach simultaneously released the network model from the
overly strong background inhibitory currents and implemented an
established, biologically plausible form of gain modulation [balanced
background inputs (Chance et al. 2002)], rendering the PPC network
responsive to simulated visual stimuli. It should be noted that our
parameter values for background current injection (g0e, g0i, %e, %i, -e,
and -i) were based on recordings from pyramidal neurons (Fellous et
al. 2003), but since we are unaware of any data to guide these
parameters for inhibitory interneurons, we assigned them the same
values for all neurons. The effect of this background activity on the
membrane potential of a pyramidal neuron and an interneuron is
shown in Fig. 1E.

For the target stimuli, the width of RFs was determined by
-rf ! -pp/2. This narrow width captures the less extensive dendritic
branching in cortical (input) layer 4 compared with layers 2/3 and 5
(see above for justification of lateral connectivity in the model). The
initial spike rate at the RF center (Eq. 15) was 0init ! 10,000/*g Hz,
which (for *g ! 1) can be equated with, e.g., 100 upstream, visually
responsive neurons firing at 100 Hz each, given our use of homoge-
neous, independent Poisson spike trains. It should be noted, however,
that the synaptic scale factor 1 ! 10 probably renders this spike rate
unrealistically high, since it implies, e.g., 1,000 upstream neurons
firing at 100 Hz. Nonetheless, the high initial spike rate ensured a
rapid-onset, high-rate visual response in the network for all processing
regimes furnished by control parameter *g, as observed experimen-
tally (e.g., Churchland et al. 2008; Paré and Wurtz 1997; Thomas and
Paré 2007). Upstream, visual response adaptation was simulated by
0div ! 10 and %0 ! 50 ms. The former is somewhat extreme but
allowed the rate of the initial population response in PPC to exceed
the steady-state response on the visual task for all values of *g (e.g.,
Churchland et al. 2008; Paré and Wurtz 1997). Our use of *g as a
denominator in determining 0init supported stronger selective inputs
when the network had stronger recurrent processing (smaller *g),
allowing the rapid-onset, high-rate visual response described above.
For larger *g, the network more readily gives way to its inputs, so a
weaker input is sufficient to elicit a similar response. The visual
response delay was tvrd ! 50 ms (Thomas and Paré 2007).

RESULTS

To systematically investigate network performance on the
visual and memory tasks, we varied a single parameter *g,
scaling the relative strength of intrinsic (Eq. 6) and extrinsic
(Eqs. 9 and 16) synaptic conductance. We ran a block of trials
for a range of values of this parameter (increments of 0.05),
searching for values supporting a mean capacity of at least 0.95
items on the n-item memory task for n ! 5 and for which all
item-encoding populations on the 5-item task coexisted at the
end of the stimulus interval (with excessively strong intrinsic
synapses, feedback inhibition produced strong competition
between populations, so that not all populations were extant at
the onset of the memory delay). Thus we interpolated between
upper and lower bounds on the strength of recurrent drive that
support performance of the task, finding that our criteria were
satisfied by *g ! {0.45, 0.5, 0.55, 0.6, 0.65}. We confirmed
that these values support a stable background state (no struc-
tured activity before stimulus onset) by running a single trial
with no stimuli for 10 s and that they support performance of
the visual task (&99% of items were accurately encoded during
the statistics window for all n and gain conditions). Because

lower values of *g produce stronger recurrent drive and higher
neuronal gain (Fig. 1F), it is convenient to define *rec ! 1/*g.
We refer to the values of *rec (equivalently *g) as the gain
conditions of the network. A single trial of the 1-item memory
task is shown in Fig. 1C.

The Model Complies with Signature Neural Data from PPC

Electrophysiological recordings from PPC show that on
1-item visual and memory tasks the rate of stimulus-selective
activity is higher during the visual delay than the memory
delay and on the memory task, the rate is higher during the
stimulus interval than the memory interval (Paré and Wurtz
1997). More generally, PPC activity consistently shows several
characteristics across visual tasks, including a rapid-onset,
high-rate response that drops to a steady state before move-
ment-related activity (e.g., Churchland et al. 2008; Louie et al.
2011; Paré and Wurtz 1997) and a decrease in rate with an
increase in the number of stimuli (e.g., Churchland et al. 2008;
Louie et al. 2011; Thomas and Paré 2007). Consistent with
these data, the mean rate of stimulus-selective spiking in the
model was higher during the visual delay than the memory
delay on the 1-item tasks (Fig. 2, A and B) and was higher
during the stimulus interval than the delay interval on the
memory task (Fig. 2B). On the multiple-item visual tasks (2 !
n ! 5), selective spike rates were higher during the stimulus
interval than the delay interval and the rate of stimulus-
selective activity decreased with increasing n (Fig. 2C). These
results were the case for all gain conditions, indicating that the
model captured the relevant aspects of PPC processing over its
full dynamic range.

For all gain conditions on the 1-item tasks, delay activity in
the model had a lower SNR, a higher CV, and higher FF during
the memory delay than the visual delay (Fig. 2, D–F). Thus
persistent activity encoded a low-fidelity representation of the
stimulus, as reported in monkey PPC (Johnston et al. 2009).
Higher-gain conditions supported higher-fidelity encoding of
the stimulus (see results for n ! 1 in Fig. 5, C–E). Quantitative
consideration of these results is provided in DISCUSSION.

Working Memory Performance in the Model Is Consistent
with That of Monkeys and Humans

To measure WM performance, we calculated the mean
number of accurately stored items on each n-item memory
task, referring to this quantity as capacity K(n). Example trials
are shown in Fig. 3. Mean spike rates at the RF centers of all
accurate item-encoding populations are shown in Fig. 4. Mod-
erate- to high-gain conditions supported a maximum capacity
(max[K(n)]) of around 2 and 3 items, respectively (Fig. 5A),
consistent with WM capacity in monkeys (Heyselaar et al.
2011) and humans (Luck and Vogel 2013; Vogel and Awh
2008). In keeping with earlier models of this class (Edin et al.
2009; Wei et al. 2012), K(n) decreased beyond a critical n for
all gain conditions, consistent with WM “overload” (Matsuyo-
shi et al. 2014). Indeed, for the range of n used here, overload
was more pronounced in lower-capacity gain conditions, con-
sistent with experimental data showing more pronounced over-
load among lower-capacity subjects (Fukuda et al. 2015; Linke
et al. 2011; Matsuyoshi et al. 2014), on lower-capacity tasks
(Xu 2007), and in lower-capacity conditions of the same task
(Chee and Chuah 2007). Finally, capacity was roughly tracked
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by the total pyramidal neuron activity in the network (Fig. 5B),
similar to electroencephalogram (EEG) recordings from PPC
(Vogel and Machizawa 2004).

Predictions for Experimental Testing and Their Implications
for Slot and Resource

Having demonstrated that our simulations are qualitatively
consistent with a range of electrophysiological and behavioral
data from visual and WM tasks, we investigated the model’s
predictions for coding fidelity on multiple-item WM tasks and
the implications of these predictions for Slot and Resource. For
all gain conditions, the coding fidelity of persistent activity on
the memory task deteriorated as the number of items increased
from n ! 1 to n ! 2, characterized by a decrease in SNR and
an increase in CV and FF (Fig. 5, C–E). With higher gain
(0.45 ! *g ! 0.55), for which K(3) & K(2), this reduction in
coding fidelity continued as the number of items increased
from n ! 2 to n ! 3, as measured by all three statistics. Within

this range of *g, coding fidelity leveled off as the number of
items increased beyond n ! 3, roughly tracking K(n) (Fig. 5A).
This finding is strikingly consistent with behavioral data show-
ing that WM precision decreases with increasing n until it
reaches a plateau at around 3 or 4 items (Zhang and Luck
2008), although our model does not speak to the strategies by
which subjects may guess the values of forgotten items on WM
tasks, the assumptions of which can influence the interpretation
of these data (see DISCUSSION). It also suggests that the same
mechanism is responsible for constraints on capacity and
resolution: the competition between item-encoding popula-
tions, mediated by broad inhibition.

Broad Feedback Inhibition Underlies Slot-Like Capacity and
Resource-Like Coding

If broad inhibition is responsible for slot-like capacity and
resource-like deterioration of coding fidelity, then removing it
will increase K(n) and eliminate the dependence of coding
fidelity on n. We therefore removed the unstructured compo-
nent of feedback inhibition (.rec | pi,ii ! 0), preserving the total
inhibitory conductance in the model by increasing the
strength of local (structured) feedback inhibition (see Pa-
rameter Values). We then determined the corresponding
upper and lower values of *g according to the criteria above
and repeated our simulations of the memory task under these
modified parameter values. As expected, these changes led
to a dramatic increase in capacity (max[K(n)] & 4.2 for all
*g) and rendered coding fidelity roughly independent of n
(Fig. 6D).
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Fig. 3. Three trials of the multiple-item memory task for the highest-gain condition, with 3 (A), 4 (B), and 5 (C) items. The model accurately stored 3 items on
each of these trials. Mean rates over all pyramidal neurons during the statistics window are inset on right of raster plots (see Fig. 1C), where shades match the
mean spike density functions in right panels. Thick horizontal bars at top show the timing of the stimuli.
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To further characterize the influence of broad inhibition on
the relationship between capacity and coding fidelity, and to
determine the robustness of our findings to variation in the
relative strengths of local and broad inhibition, we ran simu-
lations in which the strength of broad inhibition was half that
of the “default” configuration (.rec | pi,ii ! 1⁄6), again preserving
the total strength of inhibitory conductance in the model.
Capacity was between that of the default configuration and the
configuration with local inhibition only, and coding fidelity
roughly tracked K(n) by all three measures (more so in higher-
gain conditions; Fig. 6C). For completeness, we ran simula-
tions without the structured component of feedback inhibition
(.rec | pi,ii ! 1, broad inhibition only). Unsurprisingly, this ap-
proach led to a drastic reduction in capacity, but coding fidelity

again tracked K(n) by all three measures (Fig. 6A). Indeed, in
the higher-gain condition, K(n) and coding fidelity were per-
fectly in step. Thus the relationship between capacity and
coding fidelity was highly robust to the magnitude of broad
inhibition and its relative contribution to total feedback inhi-
bition. Also of note, the total pyramidal activity in the network
was load dependent in all configurations that included local
inhibition. This result contrasts with that of Wei et al. (2012),
in which total pyramidal spiking was roughly fixed in a model
with broad inhibition only, similar to the model with broad
inhibition only here (Fig. 6A, second row). Thus our model
(with local and broad inhibition) does not imply that total
pyramidal spiking is a resource to be shared by memoranda
during WM tasks. Rather, our results are consistent with the
more general hypothesis that neural tissue is a resource to be
shared. The respective roles played by local and broad inhibi-
tion in the model are apparent in Fig. 6: broad inhibition
imposes capacity and the load dependence of coding fidelity,
whereas local feedback inhibition stabilizes item-encoding
populations, while limiting interactions between them.

Finally, because the target stimuli were equidistant in our
simulations (per Heyselaar et al. 2011; Oemisch et al. 2016)
but were nonequidistant in some of the experiments providing
the data to which we compare model performance (e.g., Bays
et al. 2009; Luck and Vogel 1997; Zhang and Luck 2008), we
ran additional simulations to test the robustness of our results
to nonequidistant target stimuli. In these simulations (with the
default configuration) we placed the stimuli adjacent to one
another on the 2-item, 3-item, and 4-item memory tasks, using
the spacing of the 5-item task (72° apart; Fig. 7). This change
had no qualitative effect on our results, i.e., the relationship
between capacity and coding fidelity was retained, as was that
between capacity and total pyramidal neuron activity (Fig. 6B).

The Mechanism by Which Broad Inhibition Underlies
Resource-Like Coding

The mechanism underlying resource-like coding is that a
larger number of active item-encoding populations drives more
broad inhibition, which reduces the (absolute) mean net current
onto item-encoding neurons. This reduction in current de-
creases SNR for the simple reason that it decreases stimulus-
selective spike rates (Fig. 4) but pretrial rates are fixed (con-
stant of average). Indeed, this finding would have been the case
with earlier biophysical models of WM capacity (Edin et al.
2009; Wei et al. 2012) and precision (Almeida et al. 2015;
Roggeman et al. 2014; Wei et al. 2012) if they had measured
it, since these models included broad inhibition. However, the
reduction in current increases CV because the SD of net current
increases relative to the mean (Fig. 8A). In other words, CV
(the coefficient of variation of ISIs for accurate item-encoding
neurons) reflects the coefficient of variation of net current onto
these neurons (Pearson correlation coefficient r & 0.93 for all
gain conditions). This increase in the relative variability of net
current within each trial entails an increase in the relative
variability of total net current across trials (r & 0.88 for all gain
conditions), manifest as an increase in the relative variability of
spike counts and therefore FF. In other words, FF (the Fano
factor of spike counts) reflects the Fano factor of across-trial
total net current (Fig. 8B). Of course, this explanation of FF
assumes a tight correspondence between the total net current
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during the statistics window and the spike count, which is
indeed the case (r & 0.97 for all gain conditions).

DISCUSSION

Our local-circuit PPC model provides an integrated, mech-
anistic explanation for slot-like capacity and resource-like
coding. Both are consequences of broad inhibition, which
limits capacity by imposing competition (Edin et al. 2009) and
reduces coding fidelity by lowering spike rates and rendering
neurons more sensitive to current fluctuations. The model
makes testable predictions for electrophysiological studies of
WM. Most prominently, it predicts that on multiple-item tasks
the SNR (CV and FF) of persistent activity will decrease
(increase) with increasing n until capacity is reached, leveling
off thereafter. These predictions (Fig. 5, C–E) are consistent
with behavioral data showing that WM precision decreases
with increasing n until capacity is reached, plateauing thereaf-
ter (Zhang and Luck 2008) (bilinear precision; but see below
for discussion). They also explicitly demonstrate the incom-

patibility between Resource and mutual inhibition. The latter
dictates that coding fidelity cannot decrease indefinitely with
increasing memory load. Rather, it must be limited by compe-
tition. In this regard, we do not suggest that competitive
dynamics in WM circuitry are immutable, dictating rigid ca-
pacity limitations. Far from it, we consider context-dependent
control of neural dynamics to be fundamental to cognition (see
Standage et al. 2014), a view supported by recent studies in
relation to WM storage (Almeida et al. 2015; Edin et al. 2009;
Roggeman et al. 2014). Thus we expect that capacity and
precision will fluctuate with task demands but that their inher-
ent relationship will hold: imprecision must be limited by
capacity. Our findings offer a neural mechanism for this
relationship.

Quantitative Considerations of Coding Fidelity

We have focused on the qualitative effect of memory load on
coding fidelity, i.e., the direction of change in SNR, CV, and
FF as a function of n, but quantitative considerations warrant
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target stimuli (B). Error bars show SE. A:
results with broad inhibition only (.rec | pi,ii !
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further comment. In particular, coding fidelity in our model
was somewhat high with low n according to all three measures
(Fig. 5, C and D). SNR is explained by low pretrial rates (mean
% 1 Hz for all *g), because of the high ratio of inhibitory to
excitatory conductance in our method of background current
injection. Our parameter values were determined by in vivo
cortical data (see Parameter Values) and the low pretrial rates
they engender are consistent with neurons in the output layers
of monkey primary visual cortex, in which spontaneous activ-
ity has been thoroughly investigated (Gur et al. 2005; Gur and
Snodderly 2008; Snodderly and Gur 1995; see also Maier et al.
2010). In rodents, spontaneous activity is known to depend on
intrinsic neuronal properties and connectivity and differs be-
tween cortical layers (see Harris and Mrsic-Flogel 2013).
Unfortunately, there is a lack of such data from extrastriate and
association areas, an issue that should be addressed by future
neurophysiological studies. Our focus on coding fidelity con-
cerns task-related spiking, and we do not further pursue back-
ground activity here. Suffice it to say, higher background rates
would lower SNR in the model. As for CV and FF, it has long
been maintained that their values should be around 1 in vivo,
per the assumption that cortical spiking is Poissonian (see, e.g.,
Shadlen and Newsome 1998). More recent data and analyses
cast doubt on this assumption, as these measures are sensitive
to the finite time windows from which they are calculated,
nonstationary spike rates, and serial correlations in spike tim-
ing (see Farkhooi et al. 2009; Nawrot 2010; Nawrot et al. 2008;
Rajdl and Lansky 2014). Of particular note, failure to account
for within-trial fluctuations in spike rate (e.g., due to sensory
stimuli) can lead to overestimates of CV (Maimon and Assad
2009; Nawrot 2010), and between-trial fluctuations in rate
(e.g., due to attentional state) or an insufficient number of

spikes (less than ~5–10) can lead to overestimates of FF
(Nawrot et al. 2008). It is worth noting that CV has been
reported to be as low as ~0.5 in PPC (Maimon and Assad
2009), whereas FF has been reported in the range of ~0.3–0.4
in visual cortex (Gur et al. 1997; Kara et al. 2000). These are
important issues for the understanding of non-task-related
activity and neural coding, but none of them impacts our
explanation of WM capacity and precision or its qualitative
predictions.

WM capacity in our model also warrants further comment.
As noted above, max[K(n)] was 2 or 3 items in moderate- to
high-gain conditions (Fig. 5A), consistent with data from non-
human primate (NHP) and human subjects (Heyselaar et al.
2011; Luck and Vogel 2013). Human studies have reported
WM capacity higher than 3 items, though (see Vogel and Awh
2008). Increasing the strength and decreasing the width of
recurrent excitation readily increases capacity in our model,
but these modifications do not change the finding that coding
fidelity tracks capacity by all three measures used (not shown).
Thus the specific value of K(n) in each gain condition is
parameter dependent, but our chosen parameter values are
consistent with the majority of experimental data on capacity
(see Luck and Vogel 2013). These values are justified in
Parameter Values.

Behavioral Data Accounted For by Slot and Resource

To a great degree, the conclusions drawn about WM storage
limitations from experimental data depend on the nature of
WM tasks and the ways in which performance is measured. For
our purposes, WM tasks can be divided into two classes,
referred to below as categorical and continuous report tasks. In
both classes, information provided in a stimulus array must be

0 300 1300

N
eu

ro
n 

in
de

x

1

400
500

0 300 1300M
ea

n 
sp

ik
e 

ra
te

 (H
z)

0

100

0 300 1300

N
eu

ro
n 

in
de

x

1

400
500

0 300 1300M
ea

n 
sp

ik
e 

ra
te

 (H
z)

0

100

Time (ms)
0 300 1300

N
eu

ro
n 

in
de

x

1

400
500

Time (ms)
0 300 1300M

ea
n 

sp
ik

e 
ra

te
 (H

z)
0

100

A

B

C

Fig. 7. Three trials of the multiple-item memory task for the highest-gain condition, with 2 (A), 3 (B), and 4 (C) items, placed adjacent to one another under the
spacing of the 5-item task. Mean rates over all pyramidal neurons during the statistics window are inset on right of raster plots (see Fig. 1C), where shades match
the mean spike density functions in right panels. Thick horizontal bars at top show the timing of the stimuli.

1955SLOT-LIKE CAPACITY AND RESOURCE-LIKE NEURAL CODING

J Neurophysiol • doi:10.1152/jn.00778.2017 • www.jn.org

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (130.015.241.167) on October 13, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.



retained over a delay interval. On categorical report tasks,
performance is measured according to an all-or-none report on
that information, such as whether the value of a particular
feature is unchanged in a subsequent, postdelay stimulus array
(e.g., Luck and Vogel 1997). On continuous report tasks,
subjects report the memory of an analog feature value (e.g.,
Wilken and Ma 2004).

Slot accounts for behavioral data showing bilinear capacity
on categorical report tasks (Luck and Vogel 1997), i.e., for
capacity K, subjects retain n items for n ! K and they retain
K/n items for n & K. Slot also accounts for EEG (Vogel and
Machizawa 2004) and functional magnetic resonance imaging

(fMRI) (Linden et al. 2003; Todd and Marois 2004) data
showing bilinear signal amplitude, where these signals corre-
late with K(n) (see below). On continuous report tasks, Slot
cannot account for data showing decreasing precision with
increasing n without recourse to the resource framework.
Recent work has therefore referred to “discrete resource” and
“continuous resource” hypotheses (see Fukuda et al. 2010).
The underlying premise of the former is that slots are a kind of
resource that are used in a quantized manner, i.e., discrete
subunits of slots can be allocated flexibly to memoranda (e.g.,
Zhang and Luck 2008). This hybrid approach accounts for
bilinear precision, since, according to this hypothesis, the
subunits would be spread more thinly with increasing n, but all
would be occupied for n & K.

Conversely, Resource cannot account for bilinear capacity
on categorical report tasks but accounts for monotonically
decreasing precision with increasing n (monotonic precision)
on continuous report tasks (Bays et al. 2009; Schneegans and
Bays 2016). In its original form (described above) Resource
cannot account for bilinear precision, but it can do so with the
addition of trial-to-trial noise in the amount of resource allo-
cated to each item (van den Berg et al. 2012). Such trial-to-trial
variability has long been employed by hypotheses on cognition
[e.g., perceptual decision making (Brown and Heathcote 2005;
Carpenter and Williams 1995)] and does not deviate in prin-
ciple from the original Resource formulation. Thus we do not
consider this approach to be a hybrid one. However, the bilin-
ear signal amplitude shown by EEG (Vogel and Machizawa
2004) and fMRI (Todd and Marois 2004) studies on categorical
report tasks poses a challenge to the resource framework,
which can account for these data if the relevant resource can be
continuously and partially allocated to memoranda (see Fukuda
et al. 2010).

Neural Models of WM Storage Limitations

Abstract models instantiating Slot and Resource have been
invaluable in characterizing WM storage limitations (van den
Berg et al. 2012; Zhang and Luck 2008), but they do not speak
to the neural mechanisms that may implement their principles.
In particular, these models do not account for persistent activ-
ity, widely believed to instantiate WM storage (for discussion,
see Christophel et al. 2017; Curtis and Lee 2010; D’Esposito
and Postle 2015; Riley and Constantinidis 2016). A number of
studies have used implementation-level models to address the
neural basis of capacity (Edin et al. 2009; Lisman and Idiart
1995; Macoveanu et al. 2006; Raffone and Wolters 2001; Rolls
et al. 2013; Tanaka 2002; Wei et al. 2012). These models can
be divided into two classes, attributing capacity to fundamen-
tally different mechanisms. In one class, WM items are stored
in oscillatory subcycles (e.g., beta-gamma oscillations nested
inside alpha-theta oscillations), where different phases effec-
tively isolate memoranda from one another (Lisman and Idiart
1995; Raffone and Wolters 2001). As such, capacity is limited
by the ratio of high-frequency to low-frequency oscillations.
This compelling possibility relates feature binding more
broadly to WM (Raffone and Wolters 2001), accounting for the
finding that capacity does not depend on the complexity of
WM items (Awh et al. 2007; Luck and Vogel 1997; although
see Alvarez and Cavanagh 2004; Brady et al. 2011). Notably,
phase separation is fully consistent with the notion of discrete
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slots and further accounts for data showing that different
phases of gamma oscillations contain information about dif-
ferent memoranda (Axmacher et al. 2010; Leszczyński et al.
2015; Siegel et al. 2009). It is unclear, however, whether
simultaneously presented items could be allocated different
phases. If not, these models imply that different WM mecha-
nisms may encode simultaneously presented and sequentially
presented memoranda.

In the other class of implementation-level model, multiple
WM items are stored by attractor states (Almeida et al. 2015;
Edin et al. 2009; Macoveanu et al. 2006; Roggeman et al.
2014; Rolls et al. 2013; Tanaka 2002; Wei et al. 2012), i.e., the
balance between recurrent excitation and feedback inhibition
allows a limited number of memoranda to coexist over a delay
interval. A major difference between models of this class is the
structure of local-circuit connectivity, where different connec-
tivity structures embody different assumptions about the cir-
cuitry being simulated. In relation to capacity, the upshot of
these studies is that feedback inhibition necessarily limits
capacity (see Edin et al. 2009 for analysis) but the degree to
which it does so can be ameliorated by mechanisms that
localize and strengthen recurrent excitation.

Several of these studies also considered the neural basis of
WM precision, equating imprecision with the SD of trial-to-
trial differences between the locations of item-encoding pop-
ulations and their target locations (Almeida et al. 2015; Rogge-
man et al. 2014; Wei et al. 2012). In our model, SD was
negligible for all n and gain conditions (1.96° % SD % 2.93°),
calculated over all “accurately” encoded items, where accuracy
was recalculated with C ! 360⁄n ⁄2. This recalculation pro-
vided maximum tolerance for angular deviations, allowing up
to 180° with 1 item, 90° with 2 items, and so on. Thus our
model predicts that drift has little bearing on WM precision
under the task conditions simulated here. At first glance, this
finding appears to differ from those of earlier studies, but
closer inspection mitigates this difference. In the study by
Almeida et al. (2015) a guessing strategy was simulated (draw-
ing from a uniform distribution of feature values) for item-
encoding populations that faded out before 500 ms, so we do
not know how much drift occurred in their model. In the study
by Wei et al. (2012), SD was ~2–3° with equidistant stimuli as
n increased from 1 to maximum capacity (max[K(n)] here),
regardless of the model’s connectivity structure or the length of
their delay interval (see their Figs. 2, B and D, 3C, and 4B). For
example, with their “wide” connectivity, SD was ~2° as n
increased from 1 to 4 items over a 1-s delay (their Fig. 2, B and
D). Thus their model predicts that if drift underlies WM
precision then precision will not decrease with increasing
subcapacity memory load and equidistant targets. Our model
(like Resource) predicts that if coding fidelity underlies WM
precision then precision will decrease with increasing subca-
pacity memory load. To the best of our knowledge, there are no
extant data to confirm or refute these predictions, since earlier
studies showing load-dependent WM precision used nonequi-
distant targets (Bays et al. 2009; Schneegans and Bays 2016;
Zhang and Luck 2008). This discrepancy makes for good
science: different models offer different mechanistic explana-
tions for the same data but make a different, testable prediction
for a future experiment. Running this experiment would pro-
vide important evidence for one hypothesis over the other, but
a definitive test requires neural data. Drift can be tested by

constructing tuning curves from electrophysiological record-
ings of persistent activity on multiple-item WM tasks. To the
best of our knowledge, no studies have done so, but we are
aware of one study to quantify drift in this way from single-
item WM data (Wimmer et al. 2014). These authors showed no
appreciable drift in the average tuning bias of prefrontal cor-
tical neurons before ~2 s (their Fig. 3c). Thus these data are in
agreement with our findings over the timescale considered
here. It should be noted that our results were qualitatively
unchanged with a 2-s memory delay (not shown) and drift
remained severely limited (2.75° % SD % 4.18°). Ultimately,
WM storage limitations may reflect constraints on the encod-
ing, maintenance, and/or decoding of memoranda (Ma et al.
2014). Our results emphasize the discriminability, regularity,
and reliability of persistent spiking as sources of WM impre-
cision, thereby implicating maintenance and decoding, but we
do not suggest that these factors are the only sources of
imprecision. Crucially, our study uses established measures of
coding fidelity for single-neuron data (SNR, CV, and FF), so
our predictions for coding fidelity on multiple-item tasks are
testable with single-neuron recordings.

Limitations of the Model

Of course, our model has limitations. To begin with, it only
considers the spatial location of memoranda, ignoring other
features and their conjunctions. In effect, our simulations
assume that everything encoded by PPC satisfies a set of rules
for selection. This approach is common among attractor mod-
els (e.g., Almeida et al. 2015; Edin et al. 2009; Macoveanu et
al. 2006; Tanaka 2002; Wei et al. 2012) and is justified in
studies focused on storage limitations, i.e., it focuses on the
mutual influence of persistently active neural populations,
regardless of the features or rules that lead to their initial
activation. As noted above, models in which memoranda are
stored in oscillatory subcycles can account for feature binding
with sequentially presented stimuli (Lisman and Idiart 1995;
Raffone and Wolters 2001). A more general understanding of
feature-bound memoranda will likely require hierarchical mod-
els with converging feature maps. Such models have the
further potential to explain the neural basis of “swap errors,”
where subjects report the value of an item from the memory
array other than the one probed (see Bays 2016). Hierarchical
models also have the potential to explain the flexibility of WM
precision, that is, the finding that one item can be maintained
with higher precision than the others, but at a cost to those
other items (see Ma et al. 2014). This finding points to the
relationship between WM and attention and to the modulation
of item-encoding populations in distributed circuitry. These
and related phenomena are beyond the scope of the present
study, the focus of which is the mechanistic relationship
between capacity and precision.

Like earlier neural models of multiple-item WM (e.g., Wei
et al. 2012), our model does not account for monotonic preci-
sion (Bays et al. 2009; Schneegans and Bays 2016) in and of
itself. It is important to note, however, that the model simulates
WM storage in PPC and does not speak to the strategies that
subjects may use when reporting forgotten items. Spiking
activity in the model predicts that coding fidelity tracks capac-
ity, which is roughly bilinear in higher-gain conditions (Fig. 5).
As such, the model explains decreasing precision with increas-
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ing memory load for subcapacity loads (the “first line” of the
bilinearity) and it explains the plateau in precision (the second
line) when retained items are reported. For forgotten items, it
accounts for the plateau under the assumption that guesses are
drawn from a uniform distribution of feature values, an as-
sumption made by Slot (Zhang and Luck 2008) and by previ-
ous neural modeling studies (e.g., Almeida et al. 2015). Along
a similar vein, our model (and other models with capacity
limitations) may account for monotonic precision under the
assumption that information about retained items shapes the
distribution from which subjects draw when guessing. For
example, if a subject has a capacity of 3 or 4 items, then the
proportion of known feature values relative to memory load is
smaller on an 8-item task than on a 6-item task. As such, our
model (and other models with capacity limitations) can account
for monotonic precision if the greater proportion of unknown
values causes a broader distribution of guesses. This possibility
overlaps with “chunking” strategies, or the enhancement of
WM storage by the grouping of items along a feature dimen-
sion (see Brady et al. 2011; Cowan 2001; Miller 1956).
Experiments in which feature values are assigned nonequidis-
tantly [e.g., randomly (Bays et al. 2009; Zhang and Luck
2008)] to target stimuli are more susceptible to chunking
because the values of stimuli are more readily grouped in a
given feature space, but the effect of this grouping on guessing
strategies is unknown. There is strong evidence that subjects
improve their WM performance by leveraging the statistical
structure of stimulus arrays (Brady et al. 2009; Brady and
Alvarez 2015; Lew and Vul 2015; Orhan and Jacobs 2013),
and it seems unlikely that they would disregard this informa-
tion when guessing. For example, on a continuous report task
for color (Bays et al. 2009; Zhang and Luck 2008), if three of
six target stimuli were red (or reddish) on a given trial, then
this information not only would be useful when reporting the
value of the three red (chunked) items but would also be useful
when reporting the value of the other three items (they were not
red). The systematic investigation of guessing is a recent
addition to the literature on WM storage (Adam et al. 2017),
and we look forward to further studies characterizing this
important factor in the interpretation of WM performance (e.g.,
Nassar et al. 2018).

Finally, it is worth noting that our study is part of an ongoing
research program investigating the neural basis of WM storage
limitations with NHP subjects, in which in vivo electrophysi-
ological recordings can be made during WM tasks. Thus our
simulations are purposefully constrained by our experiments,
e.g., our use of equidistant targets (see Heyselaar et al. 2011 for
justification). This approach facilitates the testing of our pre-
dictions for single-neuron activity. In recent years, several
studies have used categorical report tasks with NHP subjects
(e.g., Elmore et al. 2011; Heyselaar et al. 2011; Lara and
Wallis 2012), but we are unaware of any studies using contin-
uous report tasks with a nonhuman species. Future work must
address this challenging gap.

Conclusions

Although recent studies have investigated neural mecha-
nisms for WM capacity and precision (Okimura et al. 2015;
Roggeman et al. 2014; Wei et al. 2012), to the best of our
knowledge no previous study has proposed a neural mecha-

nism for precision under the principles of Resource that also
accounts for persistent activity. Studies have proposed that
Resource is implemented by the gain of item-encoding popu-
lations (van den Berg and Ma 2014) and by divisively normal-
ized probabilistic spiking (Bays 2014), but these studies have
taken persistent activity for granted, i.e., they did not address
the mechanisms by which an unlimited number of low-gain or
divisively normalized neural populations would be sustained
over a memory delay. As described above, nested oscillations
and attractor dynamics constrain capacity, so other mecha-
nisms would be required. Our simulations without broad inhi-
bition (Fig. 6D) are instructive in this regard, since limiting
competition rendered coding fidelity independent of memory
load. In other words, the very mechanism that might alleviate
Resource from strong capacity constraints rendered coding
fidelity less resource-like. This conundrum points to the need
for continuous report tasks with set sizes that significantly
exceed estimates of capacity on categorical report tasks. Such
large set sizes can have significant effects on capacity [e.g., 12
items (Matsuyoshi et al. 2014)] and may provide insight into its
mechanistic relationship with precision. This relationship has
received much less attention than each of its elements. In this
regard, tremendous insight into WM capacity and precision has
been gleaned from studies focusing on their differences, guided
by the principles of Slot and Resource, respectively. Our study
suggests that their commonalities may be just as informative.
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