SENSORY PHYSIOLOGY

Topic #1 - Sensory Receptors

Readings:

Silverthorn (3rd ed.): p. 322 - 330

(2nd ed.): p. 282 - 289

Sensation

Stimulus 🔶	sensory —	primary	\rightarrow	secondary 🗕	• tertiary -	brain
	receptor	sensory		sensory	sensory	
		neuron		neuron	neuron	

Types of sensory receptors

- Chemoreceptors =
- Mechanoreceptors =
- Photoreceptors =
- Thermoreceptors =
- Nocireceptors =

• Receptors may be:

- single neuron
- single neuron with specialized ending
- specialized receptor cell

Sensory Transduction

transduction =

results into depolarization when: →

hyperpolarization when: \rightarrow

creates a receptor potential or generator potential
 these are graded responses =

example

Sensory Representations

- 1. <u>Stimulus modality</u> each receptor type responds to a **specific** type of stimulus
 - may respond to other types of stimuli if intensity is strong enough BUT the sensation is that normally detected by the receptor
 - labeled line coding =

2. <u>Stimulus Location</u>

RECEPTIVE FIELDS =

- convergence =
 - effect on acuity: →
 - 2-point discrimination =

LATERAL INHIBITION =

topographical organization of receptor input to brain
 phantom limb pain

3. <u>Stimulus Intensity</u>

- action potential is all-or-none so intensity coded by : 1.
 - 2.

Frequency of response follows a **POWER LAW**:

 $R \varpropto S^p$

i.e., permits both sensitivity to weak stimuli AND retains responsiveness to strong stimuli as well

• perceptual threshold =

frequency	
Ę,	intensitv

4. <u>Stimulus Duration</u>

- adaptation =
- two types of responses to longer duration stimuli:

1) **TONIC** =

e.g. baroreceptors (sense blood pressure) proprioceptors (sense limb position)

2) PHASIC =

e.g. touch

Topic #2 - Sensory Neural Pathways

Readings:

(2nd ed.):	p. 289 - 290
	p. 259 - 260
	p. 265 - 266
	p. 274 - 275
	(2nd ed.):

Pathways for Sensory Perception

- inputs to cortex come from: →
 - exception: →

Spinal Cord

- combination of:
 - WHITE MATTER:
 - consists of : →
 - ascending tracts (afferent = towards brain) carry sensory **input**
 - e.g. Lateral spinothalamic tract
 - descending tracts (efferent = from brain) carry motor **output**
 - e.g. Ventral corticospinal tract
 - GRAY MATTER
 - consists of : →
 - cell bodies of afferent neurons entering spine are outside the spine in the **dorsal root ganglia**

Somatic Pathways

- a minimum of 3 neurons from receptor to brain
- sensory pathways cross to other side of body, but cross at different points
- inputs all eventually go to: →

DORSAL COLUMN

- faster, larger, myelinated fibres
- carries: 🔶

SPINOTHALAMIC TRACT

- SLOWER, smaller neurons
- carries: -
- cross over at: →

Cerebral Cortex

Lobe:

Function:

- Frontal:
- Occipital:

(see table 10-3)

- Temporal:
- Parietal:
- SOMATOSENSORY CORTEX
 - in Parietal lobe just behind Central Sulcus
 - somatotopic arrangement =
 - this map of the body is called a HOMUNCULUS
 - some areas of the body are disproportionately represented (e.g. lips, fingers) due to high density of sensory receptors
 - plasticity =

Cerebral Function

•

- ASSOCIATION AREAS
- hemisphere specialization of higher functions:
 - LEFT: ->
 - RIGHT: →
- LANGUAGE ability is located in several areas:
 - WERNICKE'S area (parietal/ occipital/ temporal junction)
 - function:→
 - BROCA'S area (Frontal lobe near motor cortex)
 - function: →
 - APHASIA =

Topic #3: Hearing and Equilibrium

Readings:

Silverthorn (3rd ed.):	p. 340 - 34	46	(hearing)	(2nd ed):	p. 298 -	306
	p. 347 - 34	49	(equilibrium)		p. 306 -	308

Hearing

Sound Principles

- sound is formed by waves of alternating compression and rarefaction of air
- pitch (tone) =
- loudness (intensity) =
- **decibel scale:** 0 decibels =
- with each 10 decibels, sound gets: →
- prolonged intensities > 100 dB are painful and can be permanently damaging

The Middle Ear

- sound vibrates the **tympanic membrane** (eardrum)
 - function: -
- Eustachian tube on inner side helps keep pressure equal on both sides
 - 3 ossicles (bones): (malleus, incus, stapes = hammer, anvil, stirrup)
 - carry sound to: →
 - oval window is smaller than eardrum, so sound is amplified about 20 times

The Cochlea

• the cochlea consists of 3 fluid filled compartments:

- perilymph =
- endolymph =
- Organ of Corti
 - stereocilia =
- hair cells rest on basilar membrane with stereocilia embedded in tectorial membrane

Signal Transduction

- sound waves cause endolymph and tectorial membrane to move
 - stereocilia bent: ->
- K⁺ channels react by: →
- neurotransmitter release stimulates action potentials in primary sensory neuron
- sound wave passes & tectorial membrane pulled in opposite direction
- K⁺ channels react by: -->

potentials

Coding Pitch and Loudness

- each hair cell responds best to a particular sound pitch
- high frequencies detected by:—
- low frequencies detected by: ->
- tonotopical arrangement =

- sound loudness is coded by: →
- mid-range frequencies are perceived to be louder
- pressure wave exits via round window to prevent an "echo" effect

Auditory Pathway

- auditory nerve take signals to cochlear nucleus before thalamus and auditory cortex in the temporal lobe
- each tone "mapped" to a different area of the cortex
- some fibers cross over in brainstem
 - unlike other senses, each cortical lobe receives input from both ears

<u>Equilibrium</u>

The Vestibular Apparatus

SEMI-CIRCULAR CANALS: detect rotational movement

- 3 canals oriented in different planes (horizontal about 30° off)
- an **ampulla** is located at the base of each canal contains hair cells that *depolarize* or *hyperpolarize* depending on direction of movement of the fluid (endolymph) above it
- 1. head moves delay before the endolymph starts moving causes: ->
- 2. endolymph catches up hairs return to original position
- 3. head stops
- endolymph keeps moving, causing: 🔶
- canals do not respond when the head is *motionless or moves at a constant speed*

OTOLITH ORGANS: detect translational movement

- Utricle and saccule located in sac between semicircular canals and cochlea
- calcium carbonate crystals (otoliths) found in fluid layer above hair cells

- Utricle function: →
- Saccule function: →

Equilibrium Pathway

- vestibular nerve projects to brainstem and cerebellum
- convergence of vestibular and proprioceptive inputs in vestibular nuclei
- important to stabilize gaze

Topic #4: Vision

Readings:

Silverthorn (3rd ed.) p. 350 - 361

Function:

(2nd ed.): p. 309 - 320

Ocular Anatomy

Structure:

Iris/pupil

Cornea/lens

Aqueous humor

Vitreous humor

Retina

Nourishing the Eye

- cornea and lens are living tissue whose nutrients are
 - supplied by: -
 - drained by: -
 - glaucoma =
- Retina
 - receptors nourished by blood vessels in: ->
 - blood vessels on vitreous humor side nourish ganglion cells
 - used to assess health of small blood vessels

Pupillary Light Reflexes

- Controlled by:
 - Parasympathetic nerves
 - type of muscle: →
 - action: -
 - sympathetic nerves
 - type of muscle: →
 - action: -
- brainstem injury or drugs will suppress responses

Retinal Image Formation

- 1. retinal image formation depends on: -
- 2. angle of light refraction depends on: \rightarrow
 - most refraction occurs in the: →
 - emmetropia =

Lens Mechanism

- as objects move <u>closer</u>, the lens must refract <u>more</u> to focus light on the retina
 rounder lens =
- ailiama magalag ahan sa lang ah
 - ciliary muscles change lens shape
 to focus on near objects: →
 - − to focus on far objects: →
 - accommodation =
- ciliary muscles change through the action of: →
- closest distance the lens can focus is called: →
 - presbyopia =

Retinal Image Problems

Retinal Organization

• Blind Spot =

Photoreceptors

	RODS	CONES
Shape:		
Panga of Operation:		
Kange of Operation.		
Distribution:		
Connectivity:		
Visual Function:		

Phototransduction

= conversion of light to a neural signal

- Photopigments:
 - a combination of: →
 - respond to light by: →

DARK ADAPTATION =

LIGHT ADAPTATION =

DARK

- high levels of cyclic GMP
- Na⁺ channels **open**
- receptor cell depolarizes
- inhibitory neurotransmitter released

ON and OFF Channels

- BIPOLAR cells can be either EXCITED or INHIBITED by photoreceptors
 - light turns them either OFF or ON (via disfacilitation or disinhibition)
 - graded potentials only
- GANGLION cells take signal to brain
 - action potentials are produced
 - inputs from bipolar cells produce two types of receptive fields:
 1) OFF-Center cells:

2) **ON-Center cells:**

- these receptive fields have a <u>center-surround</u> organization thanks to: →
 - this emphasizes **contrast** at the expense of absolute amount of light

LIGHT

- change in photopigment configuration
- phosphodiesterase activated cGMP breaks down
- Na⁺ channels close
- receptor cell hyperpolarizes
- less inhibitory neurotransmitter released

Visual Pathways

- signals from RIGHT visual field go to LEFT hemisphere, and vice-versa
 - binocular visual field =
 - fibers from inner (nasal) half of each retina cross over at the optic chiasm

• the optic tracts project primarily to the thalamus, which then projects to the visual cortex in the occipital lobe

Topic #5 - Temperature, Touch & Pain

Readings:

Silverthorn (3rd ed.) p. 332 - 335

(2nd ed.) p. 291 - 294

Primary Sensory Fibers

- A β large, myelinated, fast (30 70 m/sec)
- Aδ small, myelinated, slower (12 30 m/sec)
- C small, unmyelinated (0.5 2 m/sec)

Touch-Pressure Receptors

- different types of receptors for different types of touch sensation:
 - free nerve endings -
 - Meissner's corpuscle -
 - Pacinian corpuscle -
 - Ruffini's corpuscle -
 - Merkel receptors –
- some receptor types are superficial; others are deep
- different rates of adaptation

Sensing Temperature

- separate cold (< body temperature) and hot (> body temperature) receptors
- non-adapting if beyond 20° 40° C
- discharge spontaneously

Sensing Pain

- no special receptor structure: naked nerve endings respond to mechanical, thermal or chemical stimuli
- no <u>receptor</u> adaptation to repetitive stimulus
- tissue damage releases: →
- primary neurotransmitter: ->

PAIN FIBERS:

Aδ - carries 🔶

C - carries: →

• <u>itching</u> produced by →

SPINAL REFLEXES:

• Nociceptive responses such as withdrawal reflexes can be mediated by local circuit within the spinal cord

GATING THEORY OF PAIN MODULATION:

- pain modulation by somatic (non-nociceptive) receptor activation
- tonically active interneurons normally inhibit ascending fibers in spinal cord
- painful stimulus C fibers **block** the interneurons
- touch (Type A) fibers also synapse on these interneurons but **increase** the inhibition

REFERRED PAIN:

- pain from internal organs often seems to come from unrelated locations e.g., heart to arm; stomach to back
- may be caused by neurons converging on same 2° neuron (more nerve fibers in periphery than in lateral spinothalamic tract)
 - dermatomes =

ANALGESIA:

- endogenous analgesic neurotransmitters: →
- released from descending fibers to block release of Substance P by afferent fibers at presynaptic terminals

