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Schizophrenia is a chronic and severe
mental illness characterized by positive
(e.g., delusions and hallucinations) and
negative (e.g., reduced motivation, plea-
sure, and emotional expression) symp-
toms. Deficits in cognitive abilities are
also recognized as a core feature of the
disorder (Green et al., 2004; Barch and
Ceaser, 2012), and they are a critical deter-
minant of quality of life and daily func-
tioning (Lepage et al., 2014; Strassnig et
al., 2015). Although the etiology of schizo-
phrenia is poorly understood, a dominant
hypothesis is that the disorder represents
the end stage of aberrant neurodevelop-
mental processes caused by both genetic
and environmental factors (Castle and
Buckley, 2008; Rapoport et al., 2012).
Consistent with this neurodevelopmental
model is that first-degree relatives display
similar cognitive deficits (Heydebrand,
2006).

Neurochemical explanations of schi-
zophrenia have frequently focused on the
dopaminergic system as antipsychotic
drugs alleviate positive symptoms by
blocking dopamine D2 receptors (Castle
and Buckley, 2008). While the dopamine

hypothesis of schizophrenia has been a
dominant explanatory model, the gluta-
mate hypothesis of schizophrenia (Krystal
et al., 2003) has received growing atten-
tion. This hypothesis stems from observa-
tions that blockade of the NMDAR induces
schizophrenia-like symptoms in healthy
people (Krystal et al., 1994) and worsens
the symptoms in people with schizophre-
nia (Morris et al., 2005). Recent progress
in our understanding of the neurobiology
of schizophrenia has come from modeling
aspects of the cognitive symptoms of the
disorder, particularly working memory,
using low doses of the NMDAR antago-
nist ketamine.

Working memory deficits are a debili-
tating cognitive symptom of schizophre-
nia and have been linked to hypoactivity
in the frontoparietal network (FPN)
(Barch and Ceaser, 2012). Imaging studies
in healthy people have shown that work-
ing memory function is associated with
distributed cortical networks (Chris-
tophel et al., 2017), with the FPN being
activated (Cole et al., 2014) and the
default-mode network (DMN) deacti-
vated (Anticevic et al., 2013). Notably, re-
duced deactivation of the DMN and
attenuated anticorrelation between the
FPN and the DMN have been observed in
people with schizophrenia during working
memory task performance (Whitfield-
Gabrieli et al., 2009). Moreover, blocking
NMDAR with ketamine also reduces
DMN deactivation as well as FPN and

DMN anticorrelation during working
memory tasks (Anticevic et al., 2012).
This suggests that disruption of NMDAR
in schizophrenia contributes to working
memory deficits in this disorder.

Abnormal neural oscillations have also
been reported to accompany the working
memory deficits observed in schizo-
phrenia. Some studies have linked the
pathology to dysfunction of parvalbumin-
positive interneurons in the lateral pre-
frontal cortex (Lewis, 2014), resulting in
reduced oscillations at largely higher fre-
quencies (Gonzalez-Burgos et al., 2015).
However, reduction in higher-frequency
oscillations has not been found in all EEG/
MEG studies (Barr et al., 2010; Senkowski
and Gallinat, 2015). How ketamine affects
neural oscillations during working mem-
ory is unknown. However, ketamine
administered in other experimental con-
ditions has been observed to increase the
power of higher-frequency oscillations
and decrease that of lower-frequency os-
cillations (Hong et al., 2010; Muthuku-
maraswamy et al., 2015).

In a recent study, Ma et al. (2018) in-
vestigated the effects of ketamine on
neural synchrony in 3 rhesus monkeys
performing a task in which a nonspatial
rule had to be retained over a short delay pe-
riod. Specifically, they examined whether
ketamine alters neural oscillations simi-
larly to that observed in people with
schizophrenia during working memory
tasks. Ma et al. (2018) recorded local field
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potentials (LFPs) from the lateral pre-
frontal cortex of the monkeys while they
performed a task, in which a central color
cue (the rule) instructed them to make ei-
ther an eye movement to (prosaccade) or
away from (antisaccade) a peripheral stim-
ulus presented after a delay period (0.7–1 s).
Baseline data were collected during the first
10 min of task performance, and treatment
effects were examined for 30 min after a
low-dose intramuscular injection of ket-
amine (or saline as vehicle control).

Ketamineaffectedtask-dependentchanges
in neural synchrony, as indicated by
changes in LFP power. In the baseline
condition, neural activity became desyn-
chronized during the task, including the
delay period (Ma et al., 2018, their Fig. 3).
This was particularly the case for lower-
frequency oscillations. After ketamine
administration, this task-related desyn-
chronization was attenuated, especially in
alpha-band frequencies and for most of
the delay period (Ma et al., 2018, their Fig.
3). Ketamine thus disrupted the neural
desynchronization normally accompany-
ing the task. Ketamine also affected the
trial type information (the task rule: pro-
saccade or antisaccade) that was encoded
in oscillatory power. In the baseline con-
dition, each trial type was associated with
oscillations in distinct frequency bands:
beta-band power was greater on prosac-
cade trials, whereas theta- and alpha-band
power was greater on antisaccade trials
(Ma et al., 2018, their Fig. 5). However,
after ketamine administration, the power
of these neural oscillations was no lon-
ger significant, indicating that ketamine
abolished the rule information neces-
sary to perform the task correctly.

How do ketamine perturbations of
neural oscillations impact behavior? Ket-
amine was found to increase the percent-
age of error responses in the task. To
determine whether the increase in error
responses after ketamine injection was re-
lated to the attenuation of task-related
desynchronization in alpha-band oscilla-
tions, Ma et al. (2018) repeated the analy-
sis with data from correct responses only.
They found that the increase in error re-
sponses did not correlate with the effect of
ketamine on task-related alpha-band de-
synchronization, as ketamine also de-
creased task-related desynchronization in
alpha-band frequencies when the animals
made correct responses. After computing
the difference in LFP power during the
delay period between correct and error re-
sponses, Ma et al. (2018) found that the
LFP power difference between correct and
error responses was significantly reduced

at beta-band frequencies after ketamine
administration (their Fig. 4). This indi-
cates that performance in this task rested
on beta-band oscillations, which were
vulnerable to ketamine.

The study of Ma et al. (2018) provides
insight into the role of NMDAR in neural
synchrony that may coordinate distrib-
uted neural activities involved in cognitive
processes. Their findings complement
that of Salazar et al. (2012), who found
that working memory content is re-
presented in widespread synchronization
across the FPN, dominated by parietal-to-
frontal oscillations in the beta-band fre-
quencies. Neural desynchronization is also
known to enhance information transmis-
sion, and desynchronized lower-frequency
oscillations have been particularly associ-
ated with the encoding and retrieval of
memory content (Hanslmayr et al., 2012;
Heinrichs-Graham and Wilson, 2015).
Consistent with the finding of Ma et al.
(2018) that ketamine attenuated the desyn-
chronization of lower-frequency oscilla-
tions, Kang et al. (2018) found that people
with schizophrenia have lower desynchrony
at beta-band frequencies in the FPN during
all phases of a working memory task.

Abnormal neural synchrony is a po-
tential mechanism for functional dyscon-
nectivity (Brennan et al., 2013), the basis
of the disconnection hypothesis proposed
to explain schizophrenia (Friston et al.,
2016) and for which there is increasing
evidence. Disrupted brain connectivity in
people with schizophrenia has been in-
ferred from structural and physiological
changes, which are particularly evident in
the connections involving the prefrontal
cortex (Fitzsimmons et al., 2013; van den
Heuvel and Fornito, 2014). At the net-
work level, functional dysconnectivity
could result from attenuated FPN activa-
tion and DMN deactivation, which is also
seen after ketamine administration (Anti-
cevic et al., 2012). Reduced functional
connectivity has also been associated with
lower cognitive abilities, including work-
ing memory (Bassett et al., 2009; Cole et
al., 2011; Repovs et al., 2011). Finally,
measures of functional connectivity have
been found to be heritable (Mothersill et
al., 2012), suggesting a possible genetic
basis for these deficits and a link to the
neurodevelopmental model of schizo-
phrenia. In the study of Ma et al. (2018),
ketamine predominantly disrupted oscil-
lations in the beta- and alpha-band fre-
quencies, which tend to sustain long-
range synchronization (Uhlhaas and
Singer, 2006). The effect of ketamine may
thus result from disrupted functional

connectivity within the FPN and between
the FPN and DMN.

NMDAR and GABAergic interneu-
rons are important for the synchroniza-
tion of oscillations in the beta- and
gamma-band frequencies (Whittington et
al., 2000; Uhlhaas and Singer, 2010).
Parvalbumin-positive interneurons may
be relevant as they have been found to be
abnormal in schizophrenia (Lewis, 2014)
and have been causally linked to the gen-
eration of higher-frequency oscillations
(Carlén et al., 2012). Moreover, parva-
lbumin-positive interneurons may be im-
portant for functional connectivity within
nodes of the FPN as higher-frequency os-
cillations have been linked to short-range
synchronization, (Uhlhaas and Singer,
2006). These neurons may also be more
susceptible to NMDAR blockade with
ketamine (Seamans, 2008), as they receive
their excitatory inputs through NMDAR
(Kinney et al., 2006). The disruptive ef-
fect of ketamine on the anticorrelation
between the FPN and DMN may be ex-
erted through the same mechanism. In-
deed, Anticevic et al. (2012) found in
model simulations that this effect could
be reproduced by simply reducing
NMDAR conductance onto GABAergic
interneurons.

Ketamine-treated people are a valu-
able model to study the cognitive defi-
cits of schizophrenia. Ma et al. (2018)
extended this approach to nonhuman
primates, validating an animal model to
study the underlying neural mecha-
nisms. Extending this approach to study
neural synchrony in other nodes of the
neurocognitive network could help to
provide a comprehensive understand-
ing of schizophrenia.
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