Normal Vision

Normal vision entails a healthy eye, but several things can go wrong in the functions of several eye structures.

Retinal Image Formation

The ability to focus an image on the retina depends on the refractive power of both the cornea and the lens as well as on the shape of the eye globe.

Retinal Image Formation

When the eye is able to bring distant objects to point focus on the retina without the need of a refractive aid, the eye is said to be in a state of emmetropia.

Retinal Image Formation

Accommodation has its limits! The distance at which your lens can no longer adjust to bring objects in focus is called the near point.

The location of the near point depends on a person’s age.
Retinal Image Formation

The loss in the ability to accommodate at close distances is that the lens hardens with age and the ciliary muscles become weaker. This decreased ability is called presbyopia.

Problems in Retinal Image Formation

Emmetropia is present in 30% of the adult population; the remaining 70% have a refractive error, or ametropia, in which light rays come to a point focus either behind the retina (hyperopia) or in front of it (myopia). These problems are caused by refractive defects or distorted eyeball shape.

Hyperopia (farsighted) Myopia (nearsighted)

Problems in Retinal Image Formation

The solution to hyperopia is a corrective lens (convex spherical lens) that augments the eye’s defective refractive power by converging the light rays to a focus on the retina.

Problems in Retinal Image Formation

The solution to myopia is a corrective lens (concave spherical lens) that reduces the eye’s excess refractive power by diverging the light rays to a focus on the retina.

Problems in Retinal Image Formation

In a myopic eye, the distance at which an object - moving closer to the eye - becomes focused on the retina is called the far point.

A myopic can see objects clearly if they are at the far point or closer.

Corrective lenses, bending light so it enters the eye at the same angle as if it were coming from the far point, bring the light to a focus on the retina.
The strength of a lens required to correct myopic vision depends on the distance of the far point. Close far points require strong corrective lenses. Distant far points require weak corrective lenses.

Problems in Retinal Image Formation

Even when refractive errors are corrected, objects do not come to clear focus on the retina if the lens is not transparent. Clouding of the lens, which is called cataract, also causes blurring of the retinal image.

A lens opacity (cataract) scatters light and precludes a clear retinal image.

Damage to the retina itself results in a serious, and often irreversible, loss of vision.
Retinal Diseases

Because of the lateral displacement of the inner nuclear and ganglion cell layers, the central region of the retina (macula/fovea) critically depends on the underlying choroid and pigment epithelium for oxygenation and metabolic sustenance.

Age-Related Macular Degeneration

With age, the blood vessels supplying the macula harden. Transport of vital oxygen into and waste materials/fluids out becomes more difficult. Expended photoreceptors’ outer segments cells in the pigment epithelium are less easily disposed and their accumulation contributes to drusen.

Age-Related Macular Degeneration

As drusen continues to accumulate, the pigment epithelium cells are lifted further away from their blood supply. They eventually die off along with their overlying photoreceptors. This causes first distortion and ultimately loss of vision.

The Amsler Grid

Imagine your frustration if you could see everywhere except where you are looking! Every time you look at something, you lost sight of it…
Retinitis Pigmentosa

Retinitis pigmentosa is an hereditary eye disorder that is characterized by progressive vision loss due to the gradual degeneration of the rod photoreceptors, which are responsible for peripheral and night vision.

![Image of Retinitis Pigmentosa]

Retinitis Pigmentosa

The hallmarks of Retinitis Pigmentosa are night blindness, narrowing of the retinal blood vessels, and the migration of pigment from disrupted retinal pigment epithelium into the retina, forming clumps of various sizes.

![Image of Retinitis Pigmentosa](image)

Retinitis Pigmentosa

Retinitis Pigmentosa causes "tunnel vision".

![Image of Retinitis Pigmentosa](image)

Glaucoma

Normally, the aqueous humor secreted by the ciliary body courses through the posterior chamber, around the iris into the anterior chamber, and exits the eye via the trabecular meshwork, Schlemm’s canal, aqueous, and episcleral veins.

![Image of Glaucoma](image)

Glaucoma

Resistance to the flow of the aqueous humor increases the intraocular pressure, which in turn presses on the optic disk, compressing the ganglion cells’ axons and the incoming retinal blood vessels. This disease is called Glaucoma.

![Image of Glaucoma](image)

Open-Angle Glaucoma

The outflow of aqueous humor can be impeded by dysfunction of the trabecular meshwork. A hole in the sclera can be surgically created to bypass the dysfunctional trabecular meshwork and restore normal aqueous outflow and intraocular pressure.

![Image of Open-Angle Glaucoma](image)
Closed-Angle Glaucoma

Increased intraocular pressure can also be caused by the iris root blocking the entrance to the trabecular meshwork to the flow of aqueous humor. A hole in the iris (iridectomy) can be surgically created to relieve the blockage, creating a new aqueous flow pattern and a normal intraocular pressure.

Glaucoma

Elevated intraocular pressure pushes in the optic disk, which then shows “cupping”. The deleterious effect of the pressure is greatest on the large caliber axons that originate from the peripheral retina; the axons of the macula are usually spared until the disease is advanced.

Glaucoma

Glaucoma causes “tunnel vision”.

Eyes Diseases