

Somatosensory Modalities

There are four somatosensory modalities:

Touch-Pressure Proprioception Temperature Nociception

Touch-Pressure Receptors

Primary Sensory Fibers

Aβ fibers: large, myelinated, fast fibers (30 – 70 m/s) fine touch; pressure; proprioception

Aδ fibers: small, myelinated, slow fibers (12 – 30 m/s) crude touch; cold; fast & sharp pain

C fibers: small, unmyelinated, very slow fibers (0.5 – 2 m/s) temperature; slow & dull pain

Sensing Pain

Nociceptors are free nerve endings sensitive to a variety of molecules released with tissue injury.

Chemical mediators include:

- K⁺, histamine, bradykinin & prostaglandins from site of injury;
- 2) ATP & 5-HT (serotonin) from platelets activated by injury;
- 3) Substance P from the primary sensory neurons.

Sensing Pain

Fast & sharp pain: transmitted via $A\delta$ fibers from the activation of *thermal nociceptors* (>45° or <5° C) or *mechanical nociceptors* (intense pressure).

Slow & dull pain: transmitted via C fibers from the activation of *polymodal nociceptors* (high-intensity mechanical, thermal or chemical stimuli).

Spinal Reflexes

Painful stimuli are carried by ascending pathways to the cortex, where they become conscious sensation.

Not all nociceptive responses rely on cortical circuits. *Subconscious withdrawal reflexes* can occur within the spinal cord. These are called **spinal reflexes**.

Gating Theory of Pain ModulationOur perception of pain is subject to modulation.In the gating theory of pain modulation, inhibition of the
ascending pain pathway can be enhanced by the activation
of non-nociceptive somatic Aβ fibers.Our perception of pain is subject to modulation.Our perception of pain modulation, inhibition of the
ascending pain pathway can be enhanced by the activation
of non-nociceptive somatic Aβ fibers.

Analgesia

Analgesic drugs range from aspirin to opiates.

Aspirin inhibits the synthesis of *prostaglandins* and thus slows the transmission of pain signals from the site of injury.

Opiates (*endogenous opioids: endorphins & enkephalins*) act directly on opioid receptors in the brain, which activate descending pathways that inhibit incoming pain signals.

Reading

Silverthorn (2nd edition) pages 291 – 294 Silverthorn (1st edition) pages 273 – 276