

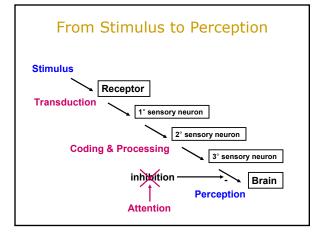
Sensory Systems

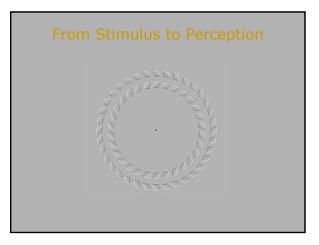
Conscious

Special senses Vision Hearing Taste Smell Equilibrium

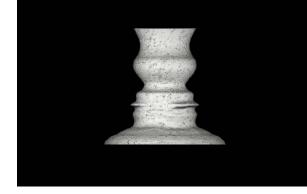
Somatic senses Touch/pressure Temperature Pain Proprioception

Subconscious


Somatic stimuli Muscle length and tension

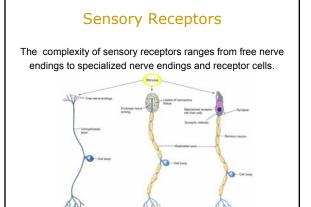

Visceral stimuli Blood pressure pH/oxygen content in blood pH of cerebrospinal fluid Lung inflation Osmolarity of body fluids Blood glucose

Sensory Systems


All sensory pathways begin with a stimulus, which acts on sensory receptors, which convert the stimulus in neural signals, which are transmitted by sensory neurons to the brain, where they are integrated.

Question: How are sensory signals transduced, coded, and processed?

From Stimulus to Perception



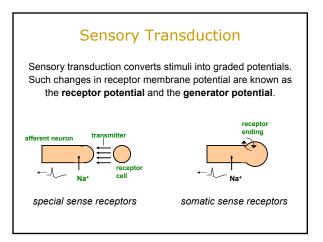
Sensory Receptors

Sensory receptors are divided into five major groups:

Chemoreceptors Mechanoreceptors Photoreceptors Thermoreceptors Nocireceptors pH, O₂, organic molecules vibration, acceleration, sound light temperature tissue damage (pain)

The specificity of a sensory receptor for a particular type of stimulus is called **the law of specific nerve energies**.

Sensory Transduction

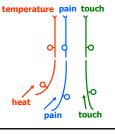

Question:

How is a stimulus converted into a neural signal?

Answer:

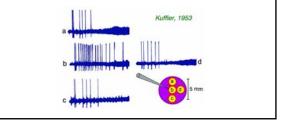
The stimulus opens ion channels in the receptor membrane, either directly or indirectly (through a second messenger).

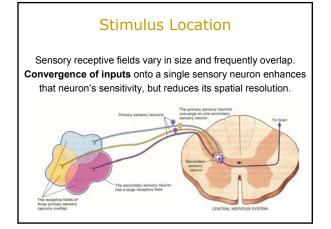
In most cases, channel opening results in net influx of Na⁺ into the receptor, causing a **depolarization** of the membrane. In a few cases, the response to the stimulus is hyperpolarization when Na⁺ channels are closed and K⁺ leaves the cell.

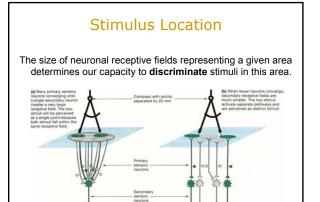

Sensory Representations To create an accurate neural representation of sensory stimuli, the brain must distinguish FOUR stimulus properties: 1) stimulus modality 2) stimulus location

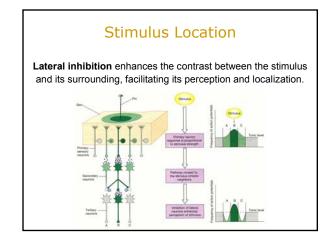
- 2) sumulus location
- 3) stimulus intensity
- 4) stimulus duration

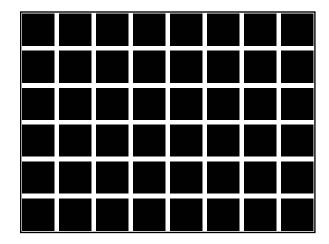
Stimulus Modality

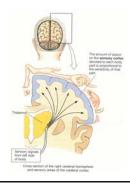

Each receptor type is most sensitive to a particular type of stimulus. The brain thus associates a signal coming from a specific group of receptors with a specific modality.


This direct association between a receptor and a sensation is called the **labeled line coding**.



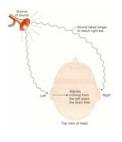

Stimulus Location


Each sensory receptor is most sensitive to stimulation of a specific area, which defines the receptor's **receptive field**. When action potentials are elicited from a sensory neuron, the neuron's receptive field codes the stimulus location.



Stimulus Location

Sensory neuronal receptive fields are orderly organized in cortical sensory areas to form topographical maps.


The location of a stimulus is coded according to which group of neurons is active.

Stimulus Location

Auditory and olfactory information is the exception to the topographical localization rule.

For these sensory modalities, the brain uses the **timing difference** in receptor activation to compute the source location of sounds or odors.

Stimulus Intensity

Stimulus intensity is coded by:

- 1) the number of receptors activated (**population coding**), from low-threshold receptors to high-threshold ones.
- 2) the frequency of action potentials (**frequency coding**), following not a linear but a power relationship.

Reading Silverthorn (2nd edition) pages 282 - 289 Silverthorn (1st edition) Page 263 - 271

Stimulus Duration

Stimulus duration can be coded by the spike train duration, but not all sensory receptors can sustain their responses. The neural code best reflects the **change in stimulation**, not the steady state.

