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Pupil size, as a component of orienting, changes rapidly in

response to local salient events in the environment, in addition

to its well-known illumination-dependent modulation. Recent

research has shown that visual, auditory, or audiovisual stimuli

can elicit transient pupil dilation, and the timing and size of the

evoked responses are systematically modulated by stimulus

salience. Moreover, weak microstimulation of the superior

colliculus (SC), a midbrain structure involved in eye movements

and attention, evokes similar transient pupil dilation,

suggesting that the SC coordinates the orienting response

which includes transient pupil dilation. Projections from the SC

to the pupil control circuitry provide a novel neural substrate

underlying pupil modulation by various cognitive processes.
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Introduction
Efficient visual coding begins in the eye. Light enters the

eye through, and is controlled by, the pupil. The pupil

constricts in response to an increase of global luminance

level, which is typically referred to as the pupillary light

reflex, and it dilates for a global luminance decrease,

referred to as the darkness reflex [1]. The quality of

the signal projected on the retina is already under the

control of this simple mechanism. This illumination-

dependent pupil modulation is well understood, and

thought to regulate the trade-off between sensitivity

and sharpness for the optimization of image quality

[2,3]. Additionally, pupil dilation has been linked to

various cognitive processes [4], which we refer to as

cognition-related pupil responses. Over the past decade,

a growing body of research has used pupil size to investi-

gate various cognitive processes, demonstrating correla-

tions between pupil size and aspects in cognition such as
Current Opinion in Neurobiology 2015, 33:134–140 
target detection, perception, learning, memory, and de-

cision making (e.g. [5–12]).

Changes in pupil size have also been associated with the

orienting response [13,14], we refer to these responses as

orienting-related pupil responses. The presentation of a

salient stimulus initiates a series of responses to orient the

body for appropriate action, including not only saccades

and attentional shifts [15,16], but also transient pupil

dilation [1,17�,18��,19�]. The function of this pupil dila-

tion is thought to increase visual sensitivity [13], although

empirical evidence to support the argument is lacking

[20]. The superior colliculus (SC; optic tectum in non-

mammals), one of most important structures related to

saccadic eye movements and spatial attention [21,22��],
may also play a central role in coordinating this orienting-

related pupil response [17�,18��,23,24��], highlighting a

novel neural substrate to possibly coordinate various

cognitive processes and pupil diameter. Here, we review

the evidence supporting the link of the SC to orienting-

related pupil responses, focusing on recent work in mon-

keys and humans.

Pupil control circuit
Pupil size is controlled by the balanced activity between

sympathetic and parasympathetic pathways (Figure 1)

that have been identified and reviewed in detail else-

where [1,25]. Briefly, in the parasympathetic system, reti-

nal ganglion cells project directly to the pretectal olivary

nucleus (PON), which in turn projects bilaterally to the

Edinger–Westphal (EW) nucleus [26]. Preganglionic para-

sympathetic neurons in the EW project to the ciliary

ganglion to control pupillary constriction muscles of the

iris [1]. Pupil size is also controlled by the dilator muscle

that is innervated by sympathetic nerves from the superior

cervical ganglion (SCG), which is driven by a circuit

originating in the hypothalamus via the spinal cord [1,25].

Although the neural substrate mediating cognitive state

and pupil dilation is less clear, the locus coeruleus-nor-

epinephrine system (LC-NE) is regularly implicated [70].

Anatomically, the LC has efferent projections to the EW

nucleus and the spinal cord [25] to connect with both

parasympathetic and sympathetic pathways, respectively

(Figure 1). Furthermore, the LC has been associated with

many functions related to cognition, arguably via arousal

mechanisms [27�]. One important preliminary study has

reported a correlation between pupil size and LC activity

in monkey single cell recording [28�]. In humans, drugs

assumed to alter arousal level via modulating LC activity
www.sciencedirect.com
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Figure 1

CONSTRICTIONDILATION

PARASYMPATHETICSYMPATHETIC

V1
EXTRA-

STRIATE

THALAMUS

BG
RETINA

SCsSCi

FRONTAL

PARIETAL

SCG

SPINAL

MEDULLA

HYPOTH

LC

CG

EW

PON

MCN

Current Opinion in Neurobiology

Schematic of the pupil orienting circuit. See text for details.

Abbreviations: BG, basal ganglia; CG, ciliary ganglion; EW, Edinger–

Westphal nucleus; Hypoth, hypothalamus; LC, locus coeruleus; MCN,

mesencephalic cuneiform nucleus; PON, pretectal olivary nucleus; SCi,

intermediate layers of the superior colliculus; SCs, superficial layers of

the superior colliculus; SCG, superior cervical ganglion; V1, primary

visual cortex.
also change pupil size accordingly [29], and pupil diame-

ter is linked to LC activation in a recent fMRI study [30].

Behavioral studies have shown that the relationship be-

tween changes in pupil size and task performances can be

well explained by assuming that pupil size reflects LC

activity [10,31,32]. Although it is generally accepted that

pupil size is modulated by activity in the LC-NE system

likely via changing arousal state, there is likely an addi-

tional pathway that also mediates cognition-related pupil

responses.

The superior colliculus (SC) is a midbrain structure

with neurons organized into a retinotopically coded

map of contralateral visual and saccade space. The
www.sciencedirect.com 
SC is functionally separated into superficial visual-only

layers (SCs) that receive inputs from the retina and

visual cortex, and intermediate layers (SCi) that receive

convergent cognitive, multi-sensory, and motor inputs

[33,34]. Moreover, the SCi projects directly to the

brainstem premotor circuit to execute orienting

responses. An increasing number of studies have sug-

gested that the SCi encodes both stimulus salience and

relevance to coordinate various components of orienting

[35,36��,37,38], including not only shifts of gaze and

attention, but also pupil dilation [17�,18��,23,24��,39].

The SC has direct connections to the pupil pathways

(Figure 1). The SCs projects ipsilaterally to the PON [40].

The SCi receives inputs from the SCs, frontal-parietal

areas, and the basal ganglia, as well as the LC [41]. The

SCi projects directly and indirectly to the EW [40,42,43],

possibly activating and inhibiting parasympathetic path-

ways, respectively. The SCi could modulate the sympa-

thetic system through efferent projections to the

mesencephalic cuneiform nucleus (MCN) [33,44,45], a

brainstem area regulating stress-related and defensive

responses [46,47]. Stimulation of the MCN activates

sympathetic vasomotor outflow [48], including modula-

tion of pupil size [1]. Therefore, the SC has the necessary

connections to coordinate orienting-related pupil

responses via key inputs to the pupil control circuit.

Pupil responses to salient stimuli
Numerous studies have identified a significant effect of

stimulus saliency on shifts of gaze and attention [15,16],

but saliency effects on the orienting-related pupil response

are less understood. Stimulus contrast is one of the most

primitive saliency components [49], and has been imple-

mented as a component of saliency in a number of compu-

tational models [50]. Changing the contrast of a target has

dramatic effects on sensory responses in the SCi and

ensuing saccadic reaction times (SRT), with faster and

greater SCi activity and faster SRTs for higher contrast

stimuli [51–53]. Moreover, auditory stimuli tend to induce

faster, but smaller sensory responses in the SCi com-

pared to those produced with visual stimuli (Figure 2a)

[54�]. If transient pupil dilation is linked to saliency via

the SCi, it should occur regardless of stimulus modality,

particularly on a salient non-visual (i.e., auditory) stim-

ulus, and the magnitude and timing of evoked pupil

responses should scale with the level of stimulus con-

trast. Recent studies have shown that pupil responses

were induced by presentation of visual stimuli, and

evoked responses were qualitative similar to those

evoked by auditory stimuli (Figure 2b) [18��], suggest-

ing that these responses are dissociable from illumina-

tion-dependent pupil responses. Most importantly, the

transient pupil responses scaled with stimulus contrast,

with faster and greater responses for higher visual stim-

ulus contrast and louder auditory stimuli. Additionally,

auditory stimuli evoked faster pupil responses compared
Current Opinion in Neurobiology 2015, 33:134–140
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Figure 2
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Effect of contrast-based saliency modulation and SCi microstimulation

on transiently evoked pupil responses. (a) Population activity recorded

from the monkey SCi following the presentation of visual (red trace) or

auditory (blue trace) stimuli (adapted with permission [54�]). (b)

Normalized pupil responses following the presentation of visual or

auditory stimuli with two different levels of stimulus contrast (high-

visual and low-visual contrast or high-auditory and low-auditory

intensity) (adapted with permission [18��]). (c) Normalized pupil

responses following SCi microstimulation (adapted with permission

[24��]). Gray bar on X-axis indicates the time line of stimulation (a:

50 ms; b and c: 100 ms). VisHigh: high contrast visual stimulus;

VisLow: low contrast visual stimulus; AudHigh: high auditory intensity

stimulus; AudLow: low auditory intensity stimulus; SCi: intermediate

layers of the superior colliculus.
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to visual stimuli, consistent with modality effects observed

in SCi neuronal activity [54�]. Overall, these results

suggest that transient pupil dilation, as one component

of orienting, is modulated by stimulus contrast, likely

mediated via the SCi.

Pupil responses to multisensory stimuli
Salient visual and auditory stimuli, when presented alone,

elicit transient pupil dilation. This raises an intriguing

question of how salient signals from the different modal-

ities (i.e., visual and auditory) are combined to influence

pupil dynamics. One hallmark of SCi processing is mul-

tisensory integration [55]. If the orienting-related pupil

responses are coordinated by the SCi, salient stimuli

presented from different modalities should be integrated

in the SCi to produce coordinated pupil responses. Be-

cause response onset latencies evoked by auditory sti-

muli in the SCi are faster than those evoked by visual

stimuli (Figure 2a) [54�], the earliest component of pupil

responses induced by audiovisual stimuli should be

similar to that induced by auditory stimuli, and pupil

response magnitude should be enhanced in the audiovi-

sual condition. Consistently, the presentation of com-

bined visual and auditory stimuli induced similar pupil

responses in monkeys (Figure 3a), with greater response

magnitude, compared to single modality presentation

[18��]. Moreover, response latencies in the audiovisual

condition were similar to those in the auditory alone

condition, but faster than those in the visual alone con-

dition, again suggesting that the SCi is involved in

integrating multisensory stimuli for orienting-related

pupil responses.

Effects of pupil responses evoked by the presentation of

salient stimuli have also been demonstrated in humans

and again, the size and magnitude of evoked pupil

responses scaled with the level of stimulus contrast

[19�]. Faster pupil responses were induced by auditory,

compared to visual stimuli (Figure 3b), and audiovisual

stimuli evoked larger pupil response magnitude, com-

pared to visual or auditory alone stimuli [56]. In sum-

mary, qualitatively similar pupil modulations have been

observed in both humans and monkeys (Figure 3).

Pupil responses to SC microstimulation
Although the central role of the SCi on shifts of gaze and

attention is well-established [21,22��], its role is less clear

on other components of orienting such as pupil dilation.

SCi microstimulation evokes saccades and deactivation of

the SCi interrupts saccades toward the affected location

of the visual field [21]. Studies exploring SCi microsti-

mulation on the shift of attention demonstrate facilitative

effects for stimuli presented in the stimulated location of

the visual field and neurons recorded in the SCi are also

modulated by covert shifts of attention [22��]. Recently, it

has shown that deactivation of the SCi diminishes covert
www.sciencedirect.com
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Figure 3
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Monkey Human

Multisensory integration of orienting-related pupil responses. (a) Monkey transient pupil responses evoked by presentation of visual-alone (red

traces), auditory-alone (blue traces), or combined audiovisual stimulus (purple traces) (adapted with permission [18��]). (b) Human transient pupil

responses evoked by presentation of visual-alone, auditory-alone, audiovisual stimulus. Gray bar on X-axis indicates the time line of stimulation

(100 ms).
selection of task-required information on the affected

location of visual field [57], establishing a causal role of

the SC on attention.

Microstimulation of the monkey SCi, subthreshold for

saccade initiation, also elicited transient pupil dilation

(Figure 2c) [24��]. Similar pupil dilation was also evoked

by microstimulation in the deep layers of the optic

tectum in anesthetised barn owls [17�]. Given that pupil

dilation was not evoked by weak microstimulation of the

SCs [24��], projections from the SCi to the EW and

MCN may underlie this pupil response by either inhi-

biting the parasympathetic pathway, activating the

sympathetic pathway, or both. Moreover, the pupil

response latency and magnitude evoked by SCi stimu-

lation was similar to that induced by salient auditory and

visual stimuli (compare Figure 2b and c). Although

there were differences in the sustained portion of the

pupil response between salient stimulus presentation

versus SCi microstimulation, the initial increase of pupil

dilation was comparable and in line with the suggested

role of the SCi in driving the initial orienting response.

These results also raise one intriguing possibility that

pupil dilation evoked by SCi microstimulation may

contribute to some facilitative effects in behavior. How-

ever, future research is required to address this question

in detail.

Modulation of pupil responses by saccade
preparation
Pupil responses are also modulated by top-down process-

es [4], and some of these modulations may be associated

with SC-mediated pupil pathways. The anti-saccade task
www.sciencedirect.com 
is frequently used to examine voluntary control because

subjects are instructed prior to stimulus appearance to

either generate a pro-saccade (look at a peripheral stimu-

lus) or an anti-saccade (look in the opposite direction of

the stimulus). Unlike the automatic visuomotor response

required in the pro-saccade condition, to complete an

anti-saccade, subjects must suppress the automatic sac-

cade and generate a voluntary response in the opposite

direction of the stimulus. Distinct neural preparatory

activity is required to successfully generate pro-saccade

versus anti-saccade [58], particularly in the SC and frontal

eye field (FEF), with higher inhibition-related fixation

activity (rostral SC) in preparation for anti-saccade com-

pared to pro-saccade. Moreover, the level of preparatory

activity (caudal SC) related to motor preparation negatively

correlated with SRTs [59,60]. Similarly, in human func-

tional magnetic resonance imaging studies, there is higher

FEF activation during preparation for anti-saccades com-

pared to pro-saccades [61–63], and this preparatory activity

in the FEF negatively correlates with SRTs [64,65].

Because pupil dilation is evoked by microstimulation of

both rostral and caudal SC [24��], pupil size should reflect

both types of preparatory activity. Consistently, human

pupil size was larger in preparation for correct anti-

saccades, compared to correct pro-saccades and errone-

ous pro-saccades made in the anti-saccade condition

(Figure 4a and b) [66�]. Furthermore, larger pupil dila-

tion prior to stimulus appearance accompanied saccades

with faster reaction times (Figure 4c and d), together

suggesting that pupil size is an effective proxy of neural

activity related to preparation of pro-saccade and anti-

saccade.
Current Opinion in Neurobiology 2015, 33:134–140
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Figure 4
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Effects of saccade preparation on pupil size (adapted with permission [66�]. (a) Change in pupil diameter for correct pro-saccade and anti-

saccade trials before stimulus appearance. (b) Pupil dilation size (50 ms before to stimulus presentation) among trials with correct pro-saccade,

correct anti-saccade, or erroneous anti-saccade. (c) Pupil response for correct short-latency express and regular-latency pro-saccades prior to

stimulus appearance. (d) Pupil response for correct short- and long-latency anti-saccades prior to stimulus appearance. In (a, c, d), the shaded

colored regions surrounding the pupillary response represent � standard error range (across participants) for different conditions. In (b), the error-

bar represents � standard error across participants. Pro: correct pro-saccade trials; Anti: correct anti-saccade trials; Anti-error: erroneous anti-

saccade trials.
Conclusions and clinical applications
The orienting-related pupil response has the potential to be

used as a biomarker for clinical investigation because of the

proposed link of top-down processes in the frontoparietal

cortex and basal ganglia to the pupil control circuit via the

SCi (Figure 1). We propose that dysfunction in the fronto-

parietal cortex and basal ganglia can lead to altered pupil

responses in cognitive tasks. For example, the ability to

recognize stimulus saliency is impaired among patients with

neurological disorders [67] and these effects could be medi-

ated via the SCi. It has been suggested that low salient

stimuli could induce maximal dopamine released as high

salient stimuli in schizophrenia [68]. Therefore, modulations

of stimulus salience on pupil size should be greatly reduced

in schizophrenia. Because autism participants show less
Current Opinion in Neurobiology 2015, 33:134–140 
interesting to eye-face stimuli [69], pupil responses induced

by the presentation of eye-face stimuli should also be

attenuated accordingly. A simple orienting task requiring

no saccadic eye movements could easily be completed by

young children and more severely affected patients, and

could be helpful for diagnoses of such disorders.

The SCi receives multisensory-related, arousal-related,

cognition-related signals from cortical and subcortical

structures, and projects directly to the brainstem premo-

tor circuit to coordinate the orienting response (Figure 1).

We reviewed a compelling set of results, showing tran-

sient pupil dilation evoked by both salient sensory stimuli

(visual, auditory, and audiovisual) and SCi microstimula-

tion, and we argue for a key role of the SCi in coordinating
www.sciencedirect.com
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the orienting-related pupil response. Moreover, pupil size

was modulated by preparatory activity related to saccade

generation (top-down signal). The SCi is a key locus for

convergence of bottom-up sensory information and top-

down goal-directed signals that are critical for orienting

[36��,37]. The SC-mediated pupil pathways could pro-

vide the substrate required for pupil size modulation by

various cognitive processes.
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