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The anti-saccade task has emerged as an important tool for investigating

the complex nature of voluntary behaviour. In this task, participants are

instructed to suppress the natural response to look at a peripheral visual stimu-

lus and look in the opposite direction instead. Analysis of saccadic reaction

times (SRT: the time from stimulus appearance to the first saccade) and the

frequency of direction errors (i.e. looking toward the stimulus) provide insight

into saccade suppression mechanisms in the brain. Some direction errors are

reflexive responses with very short SRTs (express latency saccades), while

other direction errors are driven by automated responses and have longer

SRTs. These different types of errors reveal that the anti-saccade task requires

different forms of suppression, and neurophysiological experiments in

macaques have revealed several potential mechanisms. At the start of an

anti-saccade trial, pre-emptive top-down inhibition of saccade generating

neurons in the frontal eye fields and superior colliculus must be present

before the stimulus appears to prevent express latency direction errors. After

the stimulus appears, voluntary anti-saccade commands must compete with,

and override, automated visually initiated saccade commands to prevent

longer latency direction errors. The frequencies of these types of direction

errors, as well as SRTs, change throughout the lifespan and reveal time courses

for development, maturation, and ageing. Additionally, patients diagnosed

with a variety of neurological and/or psychiatric disorders affecting the front-

al lobes and/or basal ganglia produce markedly different SRT distributions

and types of direction errors, which highlight specific deficits in saccade sup-

pression and inhibitory control. The anti-saccade task therefore provides

valuable insight into the neural mechanisms of saccade suppression and is a

valuable tool in a clinical setting.

This article is part of the themed issue ‘Movement suppression: brain

mechanisms for stopping and stillness’.
1. Introduction
The anti-saccade task (figure 1a), first developed by Peter Hallett [1], has been

used extensively to investigate mechanisms of voluntary saccade control. Typic-

ally, participants start each trial by fixating a central visual stimulus (often

referred to as a fixation point) on a computer screen. A peripheral visual stimulus

then appears and participants must first suppress the impulse to look toward the

visual stimulus and then make a saccade to the diametrically opposite position.

The task was initially developed as a way to dissociate between the stimulus

location and the goal of the saccade. This creates competition between: (i) stimu-

lus induced signals that can be predominantly automated saccadic commands

(pro-saccade), and (ii) voluntary driven signals that are presumed to be goal-

directed saccadic commands (anti-saccade). If the voluntary signals override

the automated signals, correct anti-saccades are performed. If, however, the auto-

mated signals override the voluntary signals then saccades are made toward the

stimulus, which are referred to as direction errors. The frequency and timing

of direction errors provide important insight for understanding the processes of

saccade inhibition required for the suppression of automated signals.
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Figure 1. Basic design for the (a) anti- and (b) pro-saccade tasks. Typically, participants start each trial fixating a central fixation point (FP) whose colour provides
the instruction for (a) an anti-saccade or (b) a pro-saccade. (c,d) Behaviour of healthy adult subjects, 19 – 39 years old, performing the anti- and pro-saccade tasks.
Values above zero on ordinate indicate correct anti- (c) and pro- (d ) saccade reaction times (SRT) and values below zero represent the SRT for direction errors.
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In this article, we review key aspects of human behaviour in

the anti-saccade task. We focus on two kinds of direction errors,

delineated by SRT (figure 1c), that indicate two distinct kinds of

failures to stop saccadic eye movements. We will review the evi-

dence for these different forms of saccade suppression from

different experimental settings. First, we review findings from

macaque neurophysiological experiments that have illustrated

how different saccade suppression signals interact with differ-

ent saccade generation signals. We then describe how these

abilities evolve over the lifespan in healthy humans. Finally,

we review clinical literature that has used the anti-saccade

task to identify biomarkers of disease.
2. Basic behaviour in the anti-saccade task
Typically, anti-saccade performance is compared with pro-

saccade task performance (figure 1b), where stimulus conditions

are nearly identical, but the instruction is to simply look at the

peripheral stimulus when it appears. We first describe the pro-

(figure 1d) and the anti- (figure 1c) saccade behaviour of healthy

young adult participants (ages: 19–39 years, n ¼ 71), which was

published previously [2,3]. For these data, the anti-saccade task

and the pro-saccade task were performed in separate blocks of

trials. The distribution of pro-SRTs (figure 1d) is typically not

normal but skewed to the right and is often multimodal. The fast-

est visually triggered pro-saccades create the earliest mode in the

distribution (figure 1d, light blue trace) and are termed express

latency saccades [4–6]. In humans, the range of SRTs that defines

the express saccade epoch (vertical grey bars in figure 1c,d)

typically spans 90–140 ms and in macaques it is earlier

(70–110 ms). The precise time of the express-latency epoch is

dependent upon the timing of the initial visual response to the

stimulus that propagates through the oculomotor system (see

§3). This depends greatly upon laboratory conditions, especially

the contrast of the target relative to background [7–9]. Other
experimental conditions can also be manipulated to change

the frequency of express latency saccades [6,10]; for example,

removing the fixation point 200 ms before stimulus appearance

(i.e. gap condition) or increasing the probability of the stimulus

appearing at a specific location [11,12] increases express saccade

frequency. During the pro-saccade task, the automated drive to

saccade towards a visual stimulus and the voluntary desire to

make a goal-directed eye movement work together to facilitate

pro-saccades. Here, we describe automated saccadic signals as

being triggered by the appearance of the stimulus, and propagat-

ing a well-learned motor plan to make a saccade toward the

visual stimuli. The overlapping reaction time histograms of

express, automated, and voluntary saccades can make these sac-

cades difficult to tease apart, but these three types have been

defined behaviourally [13], have been manipulated experimen-

tally using target size [14] and have been modelled statistically

to show the effect of training, specifically on the automated (or

‘fast-regular’) saccades [15].

Correct SRTs in the anti-saccade task (figure 1c, red trace)

are typically later than pro-saccades (figure 1d, blue trace)

[16,17]. Participants also occasionally generate direction errors

(figure 1c; traces below zero on ordinate), where the first

saccade after stimulus appearance is directed toward the

peripheral stimulus. Similar to the distribution of pro-SRTs

(figure 1d), direction errors can be triggered at express

(90–140 ms) or regular (more than 140 ms) latencies, and their

precise timing reveals that there are different saccade suppres-

sion mechanisms at play. The first form of suppression is

pre-emptive in nature, and must take place before the peripheral

visual stimulus can propagate a saccadic command. If this sup-

pression fails, then express latency direction errors are triggered.

The second form of suppression occurs later when the voluntary

saccadic signals must override automated saccadic signals.

If this form of suppression fails, then regular latency direction

errors are initiated. Thus, both the initial visual-motor trans-

formation and the subsequent automated saccadic signals are

http://rstb.royalsocietypublishing.org/
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involuntary signals, as they are both initiated by the appearance

of the peripheral stimulus, but occur at different times and

indicate the need for different suppression mechanisms, or

pathways, through oculomotor system (figure 2). These con-

cepts are explained in more detail using the neurophysiology

of the oculomotor circuit.
3. The oculomotor circuit
An extensive body of literature describing lesion studies,

human behavioural testing, functional neuroimaging, animal

neurophysiology, and detailed anatomy has identified several

brain areas that are involved in controlling visual fixation

and saccadic eye movements, including regions within the cere-

bral cortex, basal ganglia, thalamus, superior colliculus (SC),

brainstem reticular formation, and cerebellum [18–22].

Figure 2 shows the circuit of brain areas important for perform-

ance on the anti-saccade task. Visual inputs to the system arise

from the retino-geniculo-cortical pathway to primary visual

cortex and from the retinotectal pathway to the superficial

layers of the SC (SCs). Visual information is processed through

several extrastriate visual areas before it impinges on motor

structures to effect action. The lateral intraparietal area (LIP

in monkey; PEF, parietal eye field in human) in the parietal

cortex is one area at the interface between sensory and motor

processing. LIP/PEF projects to both the intermediate layers

of the SC (SCi) and frontal cortical oculomotor areas including

the frontal eye fields (FEF), the supplementary eye fields (SEF),

and the dorsolateral prefrontal cortex (DLPFC). The FEF play a

critical role in executing voluntary saccades. The SEF play an

important role in internally guided decision-making and

sequencing of saccades. The DLPFC is involved in ‘domain-

general’ functions (i.e. improvements in individual functions
also improve other related functions) such as executive func-

tion, spatial working memory, and suppressing automated or

reflexive responses. These frontal oculomotor regions project

to the SCi, which is a critical node in the premotor circuit

where cortical and subcortical signals converge and are inte-

grated. The SCi projects directly to the premotor circuit in the

brainstem reticular formation to provide the necessary input

to guide saccades.

There are also important pathways through the basal

ganglia [19,21,23]. Frontal cortical oculomotor areas project to

the caudate nucleus (CN). Via the direct pathway, GABAergic

neurons in the CN project directly to the substantia nigra pars

reticulata (SNr). Neurons in the SNr form the major output of

the basal ganglia circuit: they are GABAergic and they project

to the SCi and nuclei in the thalamus that project to frontal

cortex. Cortical inputs to the direct pathway lead to disinhib-

ition of the SC and thalamus because these signals pass

through two inhibitory synapses. There is also an indirect path-

way through the basal ganglia, in which a separate set of

GABAergic neurons in the CN project to the external segment

of the globus pallidus (GPe). GABAergic neurons in GPe then

project to the subthalamic nucleus (STN). Neurons in the STN

send excitatory projections to the GPe, which then projects via

GABAergic projections to the SNr. There is also a hyperdirect

pathway in which regions of cerebral cortex project to the

STN, which then projects directly to SNr. These complex sets

of excitatory and inhibitory projections within the basal ganglia

provide a rich set of control mechanisms to help guide

voluntary behaviour [19].

The behaviour from macaques that have been trained to

perform anti-saccades is similar to that of humans [24,25].

Neurophysiological experiments in macaques have provided

valuable information regarding the role of saccade suppres-

sion signals in successful completion of the anti-saccade

http://rstb.royalsocietypublishing.org/
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Figure 3. Representative neurons recorded from the SCi that highlight specific elements of neural responses for pro- (blue traces) and anti- (red traces) saccade
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adapted from [27,28].
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task. The appearance of the visual stimulus in the periphery

triggers a transient visual response that enters via the retino-

geniculo-striate pathway to V1 and the retinotectal pathway

to the SCs. This visual response propagates through the ocu-

lomotor regions of the circuit including LIP, FEF and the SCi.

Indeed, many neurons with saccade responses in the SCi [26]

have robust visual responses in addition to saccade

responses. Figure 3a,b highlights the responses of a typical

visuomotor neuron in the SCi when the monkey performs

correct pro-saccades (blue traces) and anti-saccades (red

traces). The monkey started each trial fixating a central FP.

The colour of the FP conveyed whether a pro-saccade or an

anti-saccade should be made following the appearance of

the peripheral stimulus. Figure 3a illustrates the neural
responses when the stimulus was located in the neuron’s

response field and figure 3b illustrates the responses when

the saccade was made toward the neuron’s response field. The

response field is defined as the region of visual space to

which this neuron responds. Please note that the same pro-

saccade curves are presented in figure 3a,b, but the anti-saccade

curves represent anti-saccades in different directions. In the

pro-saccade task, the neuron discharged two bursts: the first

burst was aligned with the appearance of the visual stimulus,

while the second burst was aligned with the onset of the sac-

cade (blue traces in figure 3a,b). In the anti-saccade task, the

neuron still discharged a visually aligned burst, because the

stimulus appeared in the neuron’s response field (red traces

in figure 3a). However, this neuron must be inhibited, so that

http://rstb.royalsocietypublishing.org/
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the saccade neurons on the opposite side of the brain can then

discharge the motor burst to drive the correct anti-saccade (red

traces in figure 3b). Note that even after extensive training in the

anti-saccade task, the initial visual burst is not eliminated.

Instead, the visuomotor neurons in the SCi have a reduced dis-

charge rate prior to stimulus appearance on anti-saccade trials

compared with pro-saccade trials (yellow shading in

figure 3a,b). When this pre-stimulus inhibition is insufficient,

the visually aligned response is strong enough to propagate a

saccadic command and trigger a direction error at express

latency (orange trace in figure 3c) [27]. Thus, the goal of the

enhanced pre-stimulus inhibition on anti-saccade trials serves

to prevent the initial visually aligned response from triggering

express latency direction errors.

What are the potential sources of pre-stimulus inhibition

during anti-saccade trials? First, the rostrolateral pole of the

SCi contains neurons that are active during fixation. These

neurons, referred to initially as fixation neurons, are tonically

active during visual fixation and they cease firing during the

execution of saccades greater than 28 of visual angle [29–31].

Many of these neurons also participate in the generation of

microsaccades (e.g. saccades less than 28) [32]. There is

some debate about whether these are true fixation neurons,

or saccade neurons for small vectors (i.e. microsaccades), or

in fact whether these neurons could subserve both functions.

The complex nature of what fixation entails is reviewed else-

where in this issue [33,34]. These fixation neurons, have

discharge patterns that are reciprocal to saccade neurons,

and it has been hypothesized that a network of inhibitory

connections participates in shaping the reciprocal discharges

of fixation and saccade neurons [35–37]. In support of this

hypothesis, fixation neurons in the SCi have higher dis-

charges during anti-saccade trials than during pro-saccade

trials (red trace above blue trace in figure 3d ). This type of

pre-stimulus activity during anti-saccade trials that is dis-

played by SCi fixation neurons (figure 3d ) has also been

observed in oculomotor regions of the frontal cortex and

basal ganglia. Specifically, neurons with enhanced pre-

stimulus activity during anti-saccade trials compared with

pro-saccade trials have also been observed in DLPFC [38],

the FEF [39], the CN [40], and the external segment of the

globus pallidus [41]. Thus, it appears that this form of top-

down inhibition that is required for the anti-saccade task is

widely distributed through the brain and is the signal

required to inhibit saccade neurons in the SCi prior to stimu-

lus appearance and prevent the initial visual transient

response from triggering a direction error (figure 3c).

The successful completion of the anti-saccade task also

requires that the participant generate the voluntary anti-sac-

cade in the direction opposite of the stimulus. This requires

activation of saccade neurons in oculomotor regions ipsilateral

to the stimulus and cessation of the automated motor com-

mand in oculomotor regions contralateral to the stimulus

(pink shading in figure 3a,b). This form of inhibition cannot

be global because a spatially specific saccade command must

eventually emerge from the SCi. Therefore, the growing anti-

saccade command on the ipsilateral side (red trace in

figure 3b) must outcompete the automated motor command

on the contralateral side (red trace in figure 3a) to prevent

longer latency direction errors.

What are the potential sources of an enhanced voluntary

motor command to help overcome the automated motor com-

mand? Again, there are several possible sources for such a
signal. The SEF contain neurons with enhanced activity on

anti-saccade trials [42], which could serve to provide this

voluntary command to the FEF and SCi. In addition, there is

growing evidence of the competition of automated and volun-

tary commands within the basal ganglia (figure 2) that could

provide an important source of the signal to SCi. Specifically,

there are some saccade neurons in the CN that discharge pref-

erentially for the automated saccade and there are others

that discharge selectively for the voluntary anti-saccade [43].

There are also neurons within GPe that are selectively activated

for anti-saccades [41]. Therefore, there are ways for automated

and voluntary saccade commands to also interact within the

competing pathways through the basal ganglia. For example,

there can be interactions between the traditional direct (CD

to SNr) versus indirect (CD to GPe to STN to SNr) pathways

and between the hyperdirect (cortex to STN to SNr) versus

the STN to GPe to SNr route [19,41]. Then, from the SNr

there are projections to both the ipsilateral and contralateral

SCi [44] that ultimately influence SCi activity [19,23].
4. Anti-saccade behaviour across the lifespan
Several aspects of oculomotor control vary systematically

across the lifespan; these include reaction time, accuracy

and ability to exert cognitive control [45–50]. Over several

years our laboratory has conducted pro- and anti-saccade

studies with healthy human participants who varied in age

from 5 to 90 years [2]. In these studies, the pro- and
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anti-saccade tasks were run in separate blocks of trials.

Figure 4 contrasts the cumulative distributions of SRTs for

correct anti-saccades (values above zero on ordinate) and

direction errors (values below zero on ordinate). The colour

curves contrast different age cohorts performing the task

across development (figure 4a) and normal healthy ageing

(figure 4b).

Performance on the anti-saccade task changes dramatic-

ally through child and adolescent development (figures 4a
and 5). The youngest children (5–6 years old (yo)) tended

to perform very poorly on the anti-saccade task, generating

almost 50% errors. As participant age increases to 20 yo, cor-

rect anti-SRTs (figure 5a) and the percentage of regular

latency direction errors (figure 5c) drop considerably. Express

latency direction errors, however, actually increase to peak at

9–11 yo, then drop as participants approach 20 yo (figures 5d
and 4a inset). The correct express pro-saccade data follow a

very similar pattern (figure 5b). This change in the pattern

of the timing of direction errors reveals the maturation of

the automated pathways by 9–11 yo, but the delayed matu-

ration of top-down suppression signals. Beyond 11 yo,

regular latency error rates continue to diminish, and express

latency error rates then start to improve. This reveals the

delayed maturation of top-down suppression required to

block the visual transient response from triggering express

direction errors.
The important developmental milestones identified in the

anti-saccade task have direct correlates with development of

frontal lobe function, as revealed by combining eye tracking

and functional brain imaging as participants perform the

anti-saccade task. Several imaging studies have revealed

how blood oxygen level dependent (BOLD) signal increases

through development during anti-saccade task preparation

in key frontal lobe areas (e.g. DLPFC, FEF, SEF) [45,51–54].

There are also changes in effective connectivity that support

the improved task performance [55].

During adulthood and the ageing process, however, the

anti-saccade task reveals a separate pattern of behavioural

changes (figures 4b and 5). Young adults (19–24 yo) had the

fastest correct anti-SRTs (figure 5a) and they generated the

fewest regular latency direction errors (figure 5c). Correct

anti-SRTs increased progressively throughout adulthood

(figure 5a). The regular latency direction error rate rose very

slowly throughout adulthood before increasing beyond

60 years of age. Most of the direction errors made by elderly

were initiated at longer latency, well beyond the express

epoch for all but the 77–85 yo cohort (see insert in figures 4b
and 5d ), and could be more indicative of working memory per-

formance than of inhibitory control. The changes in task

performance that occur in the elderly have also been related

to changes in functional connectivity in frontal cortex [56,57].

In summary, the different trajectories for the frequencies of
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Figure 6. Cumulative distributions of correct and error trials from three specific different disease groups performing an interleaved pro-/anti-saccade task high-
lighting different patterns of abnormal behaviour. (a) The attention deficit hyperactivity disorder (ADHD) group makes both short and long latency direction errors.
Adapted from [61]. (b) Patients with Parkinson’s disease (PD) make more long latency direction errors. Adapted from [66]. (c) Patients with amyotrophic lateral
sclerosis (ALS) make more express latency errors. Adapted from [69].
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the two types of direction errors in the anti-saccade task

(figure 5c,d) provide a fascinating view of brain development

and ageing across the lifespan.
5. Clinical studies
The anti-saccade task was first used in a clinical study by

Guitton et al. [58] who demonstrated that patients with

large lesions of DLPFC had profound difficulties performing

the anti-saccade task. Specifically, they triggered more direc-

tion errors than normal healthy adults, and this was

especially true when they were under pressure to respond

quickly. Many of these direction errors were triggered at

express latencies. This seminal study demonstrated the clini-

cal usefulness of the anti-saccade task to reveal deficits in

inhibitory control and executive function. Since this initial

study demonstrating the clinical usefulness of the anti-

saccade task, the application of the anti-saccade task as a

research tool in clinical studies has proliferated [18,59].
Our laboratory has investigated anti-saccade behaviour in

many disorders of the frontal cortex and/or basal ganglia

including attention deficit hyperactivity disorder (ADHD)

[60,61], fetal alcohol spectrum disorders (FASD) [62,63],

Huntington’s disease [64], Parkinson’s disease (PD) [65–67],

Alzheimer’s disease [68], mild cognitive impairment [68],

amyotrophic lateral sclerosis (ALS) [69], and bipolar disease

[70]. Other studies have demonstrated anti-saccade deficits in

schizophrenia [71–73], obsessive compulsive disorder [74,75],

Tourette syndrome [75], multiple sclerosis [76], depression

[77,78], frontotemporal dementia [79,80], PD [81,82], mild

cognitive impairment [83], and Alzheimer’s disease [84].

A review of the clinical literature has revealed there are

different types of direction errors than can be initiated [85].

Here, we highlight the results of three specific patient groups

which our laboratory studied (ADHD, ALS and PD), that per-

formed the same interleaved pro- and anti-saccade task with

simultaneous functional magnetic resonance imaging and

eye tracking. Despite the identical experimental conditions,

each patient group produced a unique pattern of abnormal

http://rstb.royalsocietypublishing.org/
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behaviour that reveals different mechanisms of saccade sup-

pression. Figure 6 contrasts the cumulative distribution of

SRTs of correct and error responses in ADHD, ALS and PD.

Relative to age-matched controls, all three patient groups

generate more direction errors in the anti-saccade task.

However, ADHD participants generated more express and

regular latency errors (figure 6a, left) [61]. ALS participants

made more express-latency errors (figure 6c, left) [69]. PD

patients made more longer latency errors (figure 6b, left) [66].

These different patterns of abnormal behaviour correlated

with different patterns of abnormal BOLD signal from frontal

oculomotor regions and the CN measured with functional mag-

netic resonance imaging. This dramatic difference in the timing

of direction errors between these patient groups reveals different

mechanisms of saccade suppression that are present in the anti-

saccade task and that these different mechanisms are impacted

differentially in disease.
372:20160192
6. Conclusion
In summary, analysis of behaviour in the anti-saccade task has

revealed different forms of saccade suppression required for

successful task completion. The first competition is pre-emptive

in nature, requiring a preparatory suppression signal that must
be present prior to stimulus appearance so that when the visual

transient response travels through the oculomotor areas of

the brain, it does not trigger a reflexive orienting response.

The second competition is reactionary in nature and is based

upon internal goals. It requires the active suppression of an

automated saccade plan, and the generation of a voluntary sac-

cade to an abstract location. The saccadic suppression described

here may be different than stopping ongoing movements as dis-

cussed elsewhere in the issue [86–88], but involve very similar

neural circuitry. Additionally, we posit that the two types of

saccade suppression we discussed are also different from the

need to cancel a voluntarily planned saccade, which is better

studied using the countermanding and stop-signal tasks that

are also reviewed elsewhere in this issue [85,89–91]. Both the

preparatory and the reactionary mechanisms of saccade sup-

pression are independent, as demonstrated by anti-saccade

behaviour across the lifespan, but both require an intact frontal

cortex and basal ganglia.
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