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orienting toward a peripheral cue can influence subsequent responses
to a target, depending on when and where the cue and target appear
relative to each other. At short delays between the cue and target
[cue-target onset asynchrony (CTOA)], subjects are faster to respond
when they appear at the same location, an effect referred to as
reflexive attentional capture. At longer CTOAs, subjects are slower to
respond when the two appear at the same location, an effect referred
to as inhibition of return (IOR). Recent evidence suggests that these
phenomena originate from sensory interactions between the cue- and
target-related responses. The capture of attention originates from a
strong target-related response, derived from the overlap of the cue-
and target-related activities, whereas IOR corresponds to a weaker
target-aligned response. If such interactions are responsible, then
modifying their nature should impact the neuronal and behavioral
outcome. Monkeys performed a cue-target saccade task featuring
visual and auditory cues while neural activity was recorded from the
superior colliculus (SC). Compared with visual stimuli, auditory re-
sponses are weaker and occur earlier, thereby decreasing the likeli-
hood of interactions between these signals. Similar to previous stud-
ies, visual stimuli evoked reflexive attentional capture at a short
CTOA (60 ms) and IOR at longer CTOAs (160 and 610 ms) with
corresponding changes in the target-aligned activity in the SC. Audi-
tory cues used in this study failed to elicit either a behavioral effect or
modification of SC activity at any CTOA, supporting the hypothesis
that reflexive orienting is mediated by sensory interactions between
the cue and target stimuli.

I N T R O D U C T I O N

A sudden change in our environment, such as a mouse
scurrying across the floor, reflexively grabs our attention. The
consequences of this reflexive capture of attention can be
investigated using the cue-target saccade task (Posner and
Cohen 1984). In this task, a brief flash of light or burst of noise
in the periphery is used to draw the subject’s attention to its
location. After a variable delay, a target appears at the same or
opposite location as the cue with equal probability to which the
subject must generate a response. Measuring the time required
by the subject to generate a response to the target can assess the
behavioral consequences of the initial reflexive shift in atten-
tion (Jonides 1981; Maylor and Hockey 1985; Posner 1978;
Posner and Cohen 1984).

The location of the cue relative to the target and the time that

elapses between their respective onsets [defined as the cue-
target onset asynchrony (CTOA)] both influence the subject’s
response time. At short CTOAs [i.e., �200 ms for humans,
�80 ms for monkeys (Fecteau and Munoz 2003)], subjects
respond faster when the cue and target appear at the same
location compared with when they appear at opposite loca-
tions. This same-location advantage is thought to represent the
“reflexive capture of attention” (Jonides 1981; Posner and
Cohen 1984; Remington et al. 1992; see Egeth and Yantis 1997
for review). At longer CTOAs [i.e., �200 ms for humans
(Fecteau and Munoz 2003); �80 ms for monkeys (Dorris et al.
2002; Fecteau and Munoz 2003)], subjects respond more
slowly when the cue and target appear at the same location.
This has been labeled “inhibition of return” (IOR; Posner et al.
1985; see also Maylor and Hockey 1985; Posner and Cohen
1984) and it is thought to represent the adaptive bias of
observers to explore novel locations in the environment.

Recent studies have demonstrated a neurophysiological cor-
relate to these consequences of reflexive orienting. Dorris and
colleagues (2002) demonstrated that increased saccadic reac-
tion times (SRTs) to previously cued locations were associated
with a decrease in the magnitude of the neural response to the
target in the superior colliculus (SC). Fecteau and Munoz
(2003) expanded on these results by demonstrating that reflex-
ive attentional capture was associated with an increase in the
magnitude of the target-aligned response. Importantly, these
two studies further demonstrated that these changes in activity
were limited to the target-aligned response and were not ob-
served in the motor burst accompanying the saccade. These
data suggest that the behavioral consequences of covert orient-
ing, in this case the reflexive capture of attention and IOR, may
be linked to bottom-up, sensory processes. The reflexive cap-
ture of attention originates from the overlap of the cue- and
target-aligned responses at short CTOAs, whereas IOR origi-
nates from a reduced target-aligned response at longer CTOAs.

If such sensory interactions between the cue- and target-
aligned responses are involved in producing the reflexive cap-
ture of attention and IOR, then modifying these interactions
should directly influence the neuronal and behavioral out-
comes. We assessed this possibility by training monkeys to
perform a cue-target saccade task in which both auditory and
visual cues preceded visual targets. While the animals per-
formed this task, we recorded single-unit activity from neurons
in the intermediate layers of the SC. Compared with visual
stimuli, initial phasic responses to auditory stimuli in the SC
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occur much earlier, are weaker, and are shorter in duration
(Bell et al. 2001; Wallace et al. 1996). Accordingly, we predict
that these properties of auditory responses will provide less
opportunity for the auditory cue–aligned activity and visual
target–aligned activity to interact and the reflexive capture of
attention will not be observed in behavior at short CTOAs.
Likewise, if the behavioral expression of IOR depends on an
attenuated sensory response to the target that occurs as a result
of the same neurons responding to both the visual cue and
target early in sensory processing, then no such attenuation
should occur after auditory cues and IOR should not be seen.
Moreover, if the differential response properties for visual and
auditory stimuli are responsible for the inability of auditory
stimuli to induce reflexive attentional capture or IOR, this may
explain why crossmodal IOR is difficult to observe in behavior
(see Reuter-Lorenz and Rosenquist 1996; Spence et al. 1998),
even though it is demonstrated easily within individual modal-
ities (e.g., Poliakoff et al. 2002; Spence et al. 2000).

Preliminary data were previously presented in abstract form
(Bell and Munoz 2002).

M E T H O D S

Preparation of experimental animals

All procedures were approved by the Queen’s University Animal
Care Committee and were in accordance with the Canadian Council
on Animal Care policy for the use of laboratory animals. Two adult
male rhesus monkeys (Macaca mulatta), weighing about 7 and 10 kg,
were used in this study. Animals were prepared for chronic experi-
ments in one aseptic surgical session (see Munoz and Istvan 1998 for
details). Scleral search coils to monitor eye movements and a head-
restraint device were implanted. A stainless steel recording chamber,
centered on the midline and tilted 38–40° posterior of vertical, was
implanted to allow recordings from both the right and left SC. Ani-
mals were given a course of antibiotic and analgesic treatment and
monitored closely after surgery. They were allowed a recovery period
of at least 2 wk before behavioral training was initiated.

Behavioral paradigm

The monkeys were trained to perform a nonpredictive cue-target
saccade task including auditory and visual cues combined with visual
targets (Fig. 1). The onset of each trial was signaled by the removal of
a background light and presentation of a laser- or light-emitting diode
(LED)–generated central fixation point (FP) back-projected onto a
tangent screen facing the animal. The animal was required to fixate the
FP for a period of 600–800 ms, after which an auditory or visual cue
was presented in the periphery for 50 ms. The cue was extinguished
and the animal was required to maintain central fixation for an
additional 10, 110, or 560 ms (corresponding to CTOAs of 60, 160,
and 610 ms). The FP was extinguished and a visual target appeared at
the SAME location as the peripheral cue or at the diametrically OPPOSITE

location, with equal probability. The three CTOAs were selected on
the basis of a pilot behavioral study using a wide range of CTOAs
(Dale MK, AH Bell, and DP Munoz, unpublished observations), to
obtain behavioral correlates of reflexive attentional capture and IOR.

The visual cue and target stimuli were generated using LEDs (0.05
cd/m2). The auditory-cue stimulus was composed of a white noise
burst (43.5 dB, A-scale, measured from the monkey’s head), produced
by small 4-cm, 8.0-� speakers suspended in front of the tangent
screen, facing the animal. The speakers were positioned immediately
adjacent to where the visual stimuli would appear so as not to obstruct
them. The intensities of the auditory and visual stimuli were selected

because they are known to evoke spatially dependent multisensory
interactions (Bell et al. 2001, 2002) and the strength of these interac-
tions are known to be strongest for pairings of weaker stimuli (see
Stein and Meredith 1993). All trial types (auditory vs. visual cue;
SAME vs. OPPOSITE; 60-, 160-, and 610-ms CTOA) were randomly
interleaved within a single block of trials. Monkeys were given a
liquid reward if they maintained central fixation (i.e., kept their eyes
stable within 2° of the FP) for the duration of the fixation period and
generated a saccade to the visual target. They worked until fully
satiated, at which point they were returned to their home cages. Daily
records of animal weight and water intake were kept and the animals’
health was closely monitored by the institute veterinarian.

Recording techniques and receptive field mapping

Single-neuron activity was recorded extracellularly in both SC with
tungsten microelectrodes (Frederick Haer) having impedances of
0.5–3 M� at 1 kHz. Electrodes were lowered by a hydraulic micro-
drive (Narishige) through stainless steel guide tubes supported by a
Delrin grid placed inside the recording chamber (Crist et al. 1988).
Single-neuron activity was sampled at 1 kHz after passing through a
window discriminator (Bak Electronics), which excluded action po-
tentials that did not meet both amplitude and temporal constraints.
Control of the behavioral paradigms as well as storage of eye position
and neural data was controlled by Pentium PC running a real time data
acquisition software package (REX Ver. 5.4; Hays et al. 1982). Eye
position was sampled at 500 Hz.

To map the extent of a neuron’s visual receptive field, a handheld
ophthalmoscope was used to back-project moving spots and bars of
light onto the tangent screen while the monkey maintained central
fixation. In addition, visual stimuli were systematically presented
throughout the visual field. The center of the receptive field was
approximated as the point where the maximum visual response was
elicited. Because previous studies have shown that auditory receptive
fields in the primate SC tend to be very large (45–180° in the
contralateral hemifield in primates; Wallace et al. 1996), no attempt
was made to map the extent of the auditory receptive fields and the
auditory stimuli were placed immediately adjacent to the visual stim-
uli for each of the cue positions.

FIG. 1. Schematic representation of the nonpredictive cue-target saccade
task (see METHODS for details). Monkeys are required to maintain stable gaze
on a central fixation point while a visual (V) or auditory (A) cue is presented
into the receptive field of the neuron (indicated by the dashed circle) or to the
opposite location. After which, the cue is extinguished and the animals must
maintain fixation for an additional period until the fixation point is removed
and the visual target is presented, either to the same location as the cue or to
the diametrically opposite location, with equal probability. Monkeys are then
required to generate a saccade to the target. Temporal delay between cue and
target onset is defined as the cue-target onset asynchrony (CTOA). SRT,
saccadic reaction time.
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Data analysis

All data analysis was carried out on a Sun Ultra 60 Sparcstation
using user-generated programs and a Pentium PC running MatLab
software (Mathworks). Data were first run through an automated
saccade-detection program, which identified the beginning and end of
each saccade based on velocity and acceleration template matching
(Waitzman et al. 1991). All marks were later verified by the experi-
menter and adjusted if necessary. Before analysis, all incorrect trials
were rejected (monkey generated saccade to cued location in OPPOSITE

trials, i.e., “direction error”; see following text; or generated saccade
before the removal of the FP). Likewise, saccades with latencies
below 70 ms or above 500 ms were excluded.

Neuronal responses were analyzed by constructing spike density
functions based on an exponential growth/decay function. The spike
density waveform was obtained by convolving each spike with the
following function (Thompson et al. 1996)

A�t� � 1 � exp��t

�g
� exp��t

�d
� (1)

where the activation level (A) varies as a function of time (t), accord-
ing to �g, the growth time constant that was set to 1 ms, and �d, the
decay time constant that was set at 20 ms. The individual pulses were
then summed to generate a single spike density function for each trial.
To determine a neuron’s responsiveness to the different stimulus
modalities, the peak response from 0 to 150 ms after cue presentation
at the 610-ms CTOA trials was measured. A given neuron was
classified as a visual and/or auditory-responsive neuron when the
magnitude of its cue-aligned activity was significantly greater than
baseline (defined as mean activity 100–0 ms before cue onset; Wil-
coxon rank-sum test, P � 0.05). To determine a neuron’s saccade-
aligned response, the peak activity �10 ms surrounding saccade onset
was measured. A neuron was defined as saccade-related when the
peak saccade-aligned activity consistently exceeded 80 spikes/s for
saccades to the neuron’s preferred direction. The experimenter later
verified all classifications to ensure accuracy and consistency.

The cue-response onset latency was defined as the point where the
activation level exceeded baseline (defined as the mean activity 400–
200 ms before cue onset) plus 3 SDs. The activity had to remain above
this level for a minimum of 10 ms to be classified as a valid response.
To quantify the magnitude of activity after target presentation (i.e., the
“peak of the target-aligned burst”), the absolute peak spike density
50–150 ms after target presentation was measured. To estimate the
magnitude of the “target-related response” (i.e., the magnitude of the
sensory response to the target, independent of differences in baseline
activity produced by the cue; see RESULTS), the pretarget activity
(mean activity 35–40 ms after target presentation) was subtracted
from the target-aligned burst of activity.

For the population analysis of each dependent variable, repeated-
measures ANOVAs, including the variables: cue modality (visual vs.
auditory), cue condition (SAME vs. OPPOSITE location), and CTOA (60,
160, 610 ms) were used. Simple effects were analyzed with pairwise
Wilcoxon signed rank-sum tests. Individual sessions were analyzed
with Wilcoxon rank-sum tests. In all instances, an alpha of 0.05 was
chosen as significant. For display purposes only, spike density func-
tions are shown as floating averages of 10-ms bin widths.

Only the data from correct trials were included in the analyses
described below. Error trials were divided into one of two types:
anticipatory responses, where the saccade was generated to the correct
location but with an SRT �70 ms; and direction errors, defined as
saccades initially generated away from the target (e.g., to the cued
location in the OPPOSITE condition). Monkeys generated a total of
1,072 anticipation errors (8%), with the majority being generated in
response to the visual cue and at the 160-ms CTOA [cue modality:
F(1,55) � 9.885, P � 0.005; cue condition: F(1,55) � 0.207, P �
0.50; CTOA: F(2,54) � 5.333, P � 0.01]. Monkeys generated a total

of 520 direction errors (4%), with the majority being generated in
response to the visual cue at a CTOA of 610 ms and in the OPPOSITE

condition [cue modality: F(1,55) � 26.464, P � 0.001; cue condition:
F(1,55) � 13.308, P � 0.001; CTOA: F(2,54) � 15.763, P � 0.001].

R E S U L T S

Behavior

Two monkeys completed a total of 12,305 correct trials over
the course of the recording sessions. Because both monkeys
exhibited similar behavior, data have been grouped across the
two subjects. Cue modality (visual vs. auditory), cue condition
(SAME vs. OPPOSITE), and CTOA (60, 160, 610 ms) interacted
with one another to influence SRT [3-way interaction:
F(2,112) � 20.059, P � 0.0001]. To facilitate the presentation
of these data, results for each cue modality are described
separately.

On visual-cue trials (Fig. 2A; black lines) at the shortest
CTOA (60 ms), monkeys generated saccades with significantly
shorter SRTs when the cue and target appeared at the SAME

FIG. 2. Behavior in the nonpredictive cue-target saccade task. A: mean (and
SE) saccadic reaction times for the two monkeys. Visual-cue trials shown in
black; auditory-cue trials shown in gray. Solid lines indicate trials where the
cue and target appeared in the SAME location; dashed lines represent trials
where the cue and target appeared in OPPOSITE locations. B: mean SRT for the
SAME condition subtracted from the mean SRT for the OPPOSITE condition.
Values � 0 indicate shorter SRTs in the SAME condition (i.e., facilitated
responses); values � 0 indicate shorter SRTs in the OPPOSITE condition (i.e.,
inhibition of return). Asterisks indicate statistically significant differences
between the SAME and OPPOSITE conditions for the given cue modality (Wil-
coxon rank-sum test, P � 0.05).

2174 A. H. BELL, J. H. FECTEAU, AND D. P. MUNOZ

J Neurophysiol • VOL 91 • MAY 2004 • www.jn.org



location (solid black lines) compared with when the stimuli
appeared at OPPOSITE locations (dashed black lines; Wilcoxon
rank-sum test, P � 0.0001). At the intermediate CTOA (160
ms), this effect was reversed and mean SRTs in the SAME

condition were significantly longer compared with the OPPOSITE

condition (P � 0.0001). Note this difference was attributed
both to a significant increase in mean SRT for the SAME

condition (P � 0.0001) and a significant decrease in mean SRT
for the OPPOSITE condition (P � 0.0001), compared with the
corresponding trial type at the 60-ms CTOA. At the longest
CTOA tested (610 ms), a significant albeit reduced opposite-
location advantage was present (P � 0.0001). Subtracting the
mean SRT in the SAME condition from that of the OPPOSITE

condition for each CTOA (Fig. 2B, black line) revealed a
behavioral facilitation, defined here as reflexive attentional
capture, at a CTOA of 60 ms and IOR at CTOAs of 160 and
610 ms.

By contrast, when an auditory cue preceded the visual target
(Fig. 2; gray lines), no differences between the SAME and
OPPOSITE conditions were obtained at any of the CTOAs tested
(Wilcoxon rank-sum test, P values � 0.50). Saccades gener-
ated to visual targets after auditory cues had very similar SRTs,
regardless of the location of the cue relative to the target or the
CTOA. Interestingly, mean SRT for auditory-cue trials consis-
tently fell between those obtained for the two visual-cue con-
ditions. That is, at the 60-ms CTOA, presenting an auditory cue
before a visual target did not provide as great a behavioral
advantage as a visual cue and target presented to the SAME

position but, rather, elicited shorter SRTs compared with a
visual cue and target presented to OPPOSITE locations. At the
longer CTOAs (160 and 610 ms), auditory cues had little effect
on behavior—effectively serving as a neutral condition, and
therefore emphasizing how the IOR effect obtained after visual
cues was likely attributable to both an inhibitory influence
acting in the SAME condition and a facilitatory effect acting in
the OPPOSITE condition.

We also assessed the effect of cue modality, cue condition,
and CTOA on the execution of saccades by comparing peak
saccadic velocity and the accuracy of the saccadic endpoints
across the different conditions. Main sequence plots (saccadic
amplitude vs. peak saccadic velocity; Bahill et al. 1975) were
constructed for each trial condition (not shown). Peak saccadic
velocities were not influenced by cue modality, cue condition,
or CTOA [3-way: F(2,112) � 1.845, P � 0.158]. For a given
saccadic amplitude, a similar peak saccadic velocity was
achieved, regardless of the individual trial conditions.

To assess the accuracy of the saccades, we calculated both
the saccadic gain (saccadic amplitude/target eccentricity) and
endpoint error (magnitude of the vector between saccadic
endpoint and true target location; not shown). Neither of these
factors was influenced by cue condition, modality, or CTOA
[3-way: Gain: F(2,112) � 0.641, P � 0.527; Motor Error:
F(2,112) � 1.773, P � 0.170]. All saccades were equally
accurate, regardless of the modality of the cue, the location of
the target relative to the cue, or the delay between cue and
target onset.

In summary, reflexively shifting attention to a particular
location by means of a visual cue resulted in early reflexive
attentional capture at the short CTOA (60 ms) followed by IOR
at the longer CTOAs (160 and 610 ms). These effects were
limited to changes in SRT; peak saccadic velocity and endpoint

accuracy were unaffected. Auditory cues were unable to elicit
either reflexive attentional capture or IOR at any CTOA tested,
showing no significant change in SRT across any of the
trial types.

Activity in the SC recorded from the nonpredictive
cue-target saccade task

Sixty-one neurons were recorded from the intermediate lay-
ers of both colliculi of two monkeys (29 and 32 from monkeys
R and H, respectively). Eighty-four percent (51/61) were re-
sponsive to sensory stimuli (visual only: n � 37; auditory only:
n � 2; bimodal: n � 12) and were considered for further
analysis. Of these, 86% (44/51) had significant saccade-related
activity (see METHODS for classification criteria).

The behavioral consequences of nonpredictive cueing were
closely reflected in changes in the magnitude of the target-
aligned burst of activity of neurons in the intermediate layers of
the SC [3-way interaction between cue modality, cue condi-
tion, and CTOA: F(2,96) � 11.099, P � 0.001]. An analysis of
the magnitude of the saccadic burst showed no difference
across the different trial conditions [main effect of cue condi-
tion: F(1,48) � 0.008, P � 0.50; cue modality: F(1,48) �
0.965, P � 0.32; CTOA: F(2,96) � 0.783, P � 0.45; or 3-way:
F(2,96) � 1.649, P � 0.19]. When considered in conjunction
with the lack of effect of cue modality, condition, or CTOA on
the peak velocity and saccadic endpoint accuracy, these data
suggest that reflexively orienting by means of a nonpredictive
cue influences the neural processes involved in saccadic initi-
ation but not those associated with the actual execution of the
saccade. We now describe how the early and late consequences
of reflexive covert orienting (i.e., attentional capture and IOR)
were correlated to the peak target-aligned burst of activity in
the SC.

Neural correlates of reflexive attentional capture

At the shortest CTOA tested (60 ms), monkeys exhibited a
same-location advantage when the target was preceded by a
visual cue and no difference in behavior when an auditory cue
was presented (Fig. 2). Does the presence of the same-location
advantage for visual cues correspond to an overlap of the cue-
and target-aligned responses that does not occur after auditory
cues?

Figure 3 shows the activity of a single sensory-motor neuron
in the intermediate layers of the SC when visual or auditory-
cue stimuli were presented at a 60-ms CTOA. When the visual
cue appeared in the receptive field of this neuron (Fig. 3, A and
E), a strong burst of action potentials occurred, beginning
about 65 ms after cue onset. When the visual target appeared at
the SAME location as the visual cue (Fig. 3A), the neural
response to the target added to the residual activity from the
cue, resulting in a stronger target-aligned burst compared with
when the cue was presented on the opposite side (Fig. 3C).

This overlap between the cue- and target-aligned responses
did not occur after auditory cues (Fig. 3, B, D, F, and H). This
particular neuron had a weak, but significant, response to the
auditory cue that was long over by the time the visual response
to the target began. As such, there was no opportunity for the
cue- and target-aligned responses to overlap when both stimuli
appeared in the same receptive field (Fig. 3B). Moreover, there
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was no other observable change in the target-aligned response
after the appearance of the auditory cue. Therefore it seems
unlikely that any significant multisensory interactions (Stein
and Meredith 1993) took place after presentation of the audi-
tory cue and visual target at the 60-ms CTOA.

Similar effects of cue modality and cue condition were seen

across the population of neurons examined. Figure 4 shows the
mean peak of the target-aligned burst for each visually respon-
sive neuron (n � 49; Fig. 4). Note that for the remainder of the
analysis, the auditory-only neurons (n � 2) have been removed
because they had no target-related activity. As demonstrated in
Fig. 3, the overlap of the visual-cue and target-aligned re-

FIG. 3. Neuronal correlates of reflexive attentional capture in the
superior colliculus (SC). Activity for an individual sensory-motor neuron
recorded from the intermediate layers of the SC, for trials at the 60-ms
CTOA. All traces are aligned on cue onset. When a visual cue and target
appear in the same response field (A, black line), there is a substantial
increase in the magnitude of the target-aligned activity compared with
when the cue appears at the OPPOSITE location, outside the receptive field
of the neuron (C). The auditory-cue response, on the other hand, provided
very little residual cue activity on which the visual target response could
build and so no facilitation occurred (B). Vertical arrows indicate the
mean SRT for the SAME (solid arrow) and OPPOSITE (dashed arrow)
conditions.

FIG. 4. Influence of cue condition and modality on neu-
ronal activity at the 60-ms CTOA. Each point represents the
mean peak in the target-aligned burst of activity for an
individual visually responsive neuron, after a visual (A) or
auditory (B) cue. Points lying below the unity line indicate
greater activity in the SAME condition and vice versa. Across
the population, there was a highly significant trend for a
stronger burst of target-aligned activity in the SAME condi-
tion compared with the OPPOSITE condition after visual (A,
solid points, Wilcoxon signed rank-sum test; P � 0.005) but
not auditory cues (B, open points; P � 0.50).
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sponses at the 60-ms CTOA resulted in a significantly stronger
burst of activity in the SAME condition compared with the
OPPOSITE condition for the majority (36/49; 73%) of the neurons
examined (Fig. 4A; P � 0.005). This was associated with a
same-location advantage in behavior (Fig. 2).

No change in the target-aligned burst was observed after the
presentation of auditory cues (Fig. 4B). Relatively few neurons
in our sample responded to auditory stimuli (14/61; 23%) and
those that did exhibited weaker responses (Wilcoxon rank-sum
test; P � 0.05) that occurred earlier in time compared with
visual responses (Wilcoxon rank-sum test; P � 0.0001; Table
1). As such, there was no opportunity for the auditory cue– and
visual target–aligned responses to interact. In the auditory-cue
condition, the magnitude of the target-aligned burst of activity
did not change on the basis on the cue’s location (i.e., SAME vs.
OPPOSITE; Fig. 4B; P � 0.50).

To summarize, the same-location advantage that was ob-
tained in SRT for visual cues at the 60-ms CTOA was associ-
ated with an increase in the peak of the target-aligned burst of
activity that originated from the overlap of the cue- and target-
aligned responses. The inability of auditory stimuli to evoke a
similar pattern of behavior appears to be a result of both a lack
of significant cue-aligned response across the population on
which the incoming target signals can build and the absence of
significant multisensory interactions between the cue and target
responses.

Neural correlates of inhibition of return

At the 160- and 610-ms CTOAs, an opposite-location
advantage in behavior emerged for visual but not auditory
cues (Fig. 2). Figure 5 shows the activity of a sensory-motor
neuron recorded from the intermediate layers of the SC at
the 160- and 610-ms CTOAs. In the case of visual-cue trials,
the opposite-location advantage in behavior was associated
with a reduction in the magnitude of the target-aligned burst
of activity in the SAME condition compared with when the
two were presented to OPPOSITE locations. This reduction of
target-aligned activity was greater at the 160-ms CTOA
(Fig. 5A) compared with the 610-ms CTOA (Fig. 5C), as
was the behavioral IOR effect (Fig. 2). For auditory cues,
neither the relative location of the cue nor the CTOA had an
effect on behavior (Fig. 2) or the target-aligned burst of
activity (Fig. 5, B and D).

Similar trends were observed across the population of neu-
rons sampled (Fig. 6). At the 160-ms CTOA, visual-cue trials
consistently exhibited weaker target-aligned bursts of activity

(Fig. 6A; Wilcoxon signed-rank test, P � 0.0001) in the SAME

condition. At the longest CTOA (610 ms), although a signifi-
cant opposite-location advantage persisted in behavior, the
difference in activity between the SAME and OPPOSITE conditions
with visual cues was no longer significant (Fig. 6C; P � 0.20).
It is possible that an increase in pretarget activity observed
after the cue response might have masked a difference in the
actual sensory response to the target. This possibility is ex-
plored further in the next section. Again, no difference in
activity was observed after auditory cues at either CTOA (Fig.
6, B and D).

To illustrate these data more clearly, we plotted the neural
activity in a similar manner as SRT (compare Figs. 7 and 2).
This subtraction plot shows that a greater peak target-aligned
burst of activity in the SAME condition was associated with a
same-location advantage in behavior, whereas weaker activity
was associated with an opposite-location advantage (compare
Figs. 7B and 2B). As predicted on the basis of behavior, the
opposite-location advantage in mean SRT at the 160-ms CTOA
for visual-cue trials corresponded to both a significant reduc-
tion in the target-aligned burst in the SAME condition and a
significant increase in the OPPOSITE condition, relative to the
visual-cue trials at the 60-ms CTOA (Wilcoxon signed-rank
test, P values � 0.001 and 0.001, respectively).

To confirm the existence of a relationship between SRT and
the magnitude of the target-aligned burst of activity, we cal-
culated the Pearson correlation coefficient for SRT versus the
peak of the target-aligned burst of activity on a trial-by-trial
basis for each neuron in our sample population. For this anal-
ysis, we grouped trials from all CTOAs and both cue modal-
ities and conditions. Figure 8A shows the correlation between
SRT and the peak of the target-aligned burst of activity on a
trial-by-trial basis for a single sensory-motor neuron (black
points, Fig. 8A). This particular neuron showed a significant
negative relationship such that as the magnitude of the peak
activity increased, SRT decreased (Pearson correlation coeffi-
cient: r � �0.42; P � 0.05). This was also true for the
population (Fig. 8B), which exhibited a negative bias in cor-
relation coefficients and of which over half of the neurons
assessed (32/49; 65%) were significantly correlated (P � 0.05).

These data demonstrate that sensory interactions between
the cue and target influence the magnitude of the target-aligned
burst of neurons in the intermediate layers of the SC and how
these changes are related to behavior. Reflexive attentional cap-
ture was associated with an increase in activity, arising from the
overlap of the cue- and target-related responses. IOR was associ-
ated with a reduction in the peak of the target-aligned burst of
activity in the SAME condition and an increase in the OPPOSITE

condition. Auditory cues produced neither of these neural trends,
which could account for why no crossmodal reflexive attentional
capture or IOR was observed in our task.

Effect of nonpredictive cues on target activity in the SC

Although there is a clear effect of nonpredictive cues on the
absolute peak of the target-aligned burst of activity shortly
after target onset (Fig. 7), what is still uncertain is its effect on
the actual sensory response to the target, independent of pre-
target activation. An increase in pretarget activation that often
follows the visual-cue response raises the baseline for incom-
ing sensory signals related to target presentation, potentially

TABLE 1. Properties of the cue-related response

Cues
Cue Response Onset

Latency, ms
Cue Response

Magnitude, sp/s

Visual 75 � 2 (52–118) 1301 � 10 (43–342)
60 ms CTOA 76 � 2 (52–121) 132 � 10 (43–335)
160 ms CTOA 75 � 2 (53–118) 133 � 10 (41–369)
610 ms CTOA 74 � 2 (49–115) 129 � 9 (43–325)

Auditory 44 � 3 (30–67) 94 � 12 (47–189)
60 ms CTOA 44 � 3 (30–67) 95 � 13 (43–204)
160 ms CTOA 44 � 3 (30–68) 96 � 12 (53–191)
610 ms CTOA 44 � 3 (31–67) 90 � 12 (45–173)

Values are mean � SE. For visually responsive neurons (n � 49); for all
aurally responsive neurons (n � 14). CTOA, cue-target onset asynchrony.
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masking any changes in the sensory response to the target
when it appears at the SAME location (e.g., at the 610-ms
CTOA; Fig. 6A). To investigate the effect of nonpredictive
cues on the magnitude of the sensory response to the target, we
subtracted the pretarget activity (see METHODS) from the peak of
the target-aligned burst to isolate the sensory response to the
target. This procedure has been schematized in Fig. 9A. The
thick, dark arrow represents the epoch where the pretarget
activity is measured. The wider, lighter-shaded box represents
the epoch where the peak of the target-aligned burst of activity
is measured. Subtracting the former from the latter reveals the
magnitude of the sensory response to the target (solid and
dashed vertical arrows for the SAME and OPPOSITE conditions,
respectively).

This analysis revealed a knockdown of the target-related
response across all CTOAs when the visual cue and target
appeared at the SAME location (Fig. 9, B and C). Although this

effect was statistically significant at all CTOAs, it was stron-
gest at the 160-ms CTOA. Interestingly, the difference at the
160-ms CTOA was attributed both to a significant decrease in
the response magnitude in the SAME condition (solid black line)
and an increase in the OPPOSITE condition (dashed black line)
for the corresponding trial type at the 60-ms CTOA (Wilcoxon
signed rank-sum test, P � 0.005 and P � 0.05, respectively;
Fig. 9B). Furthermore, as was predicted in the previous section,
isolating the target-related response revealed a significant
knockdown of the sensory response to the target at the 610-ms
CTOA that was previously masked by the pretarget activity. In
the case of auditory-cue trials, although the target-related re-
sponse was consistently stronger when the cue was presented
to the OPPOSITE location compared with the SAME condition, the
difference between the two conditions was not statistically
significant at any of the CTOAs (P values � 0.10).

To summarize, these results demonstrate that when a visual

FIG. 5. Neuronal correlates of inhibition of return (IOR) in the SC. Activity for an individual sensory-motor neuron recorded
from the intermediate layers of the SC, for trials at the 160- and 610-ms CTOA. All traces are aligned on cue onset. When a visual
cue and target appear in the same receptive field at a CTOA of 160 ms (A, solid black line), there is a substantial reduction in the
magnitude of the target-aligned activity compared with when the cue appeared in the OPPOSITE location (A, dashed black line). When
the CTOA was increased to 610 ms, the difference in magnitude of the target-aligned burst of activity across the two conditions
was reduced compared with the previous CTOA. No such changes in activity were observed after auditory cues (B, D, gray lines).
Vertical arrows indicate the mean SRT for the SAME (solid arrow) and OPPOSITE (dashed arrow) conditions.
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target is preceded by a visual cue presented to the SAME

location, the sensory response to that target, ignoring the effect
of changes in the pretarget activity, is attenuated compared
with when the cue is presented to the OPPOSITE location. How-
ever, when this response builds on elevated levels of pretarget
activity, this attenuation is masked, which can partially coun-
teract the IOR effect (Fig. 2). When a visual target is presented
to the OPPOSITE location as a visual cue at a CTOA of 160 ms,
the target-related response is enhanced compared with the
response at the previous CTOA, which can further increase the
magnitude of the IOR effect.

D I S C U S S I O N

The goal of this study was to assess how interactions be-
tween the cue- and target-related responses contribute to the
behavioral consequences of the reflexive orienting of attention.
Monkeys were trained to perform a nonpredictive cue-target
saccade task while single-unit activity was recorded from the
intermediate layers of the SC. When presented with visual cues
at a 60-ms CTOA, monkeys show a same-location advantage
in SRT (Fig. 2), consistent with the behavior previously de-
scribed in the human literature (Jonides 1981; Posner and
Cohen 1984; Wright and Richard 2000). This reflexive capture
of attention was associated with a stronger target-aligned burst
of activity in the SC originating from the overlap of the cue-
and target-aligned activities (Figs. 3 and 4). At the 160- and
610-ms CTOAs, monkeys exhibited a same-location disadvan-
tage, consistent with the human literature (Maylor and Hockey
1985; Posner and Cohen 1984; Wright and Richard 2000). This
IOR effect was associated with a reduction in the magnitude of

the target-aligned burst of activity (Figs. 5 and 6). Auditory
cues used in this study did not elicit either behavioral effect,
nor were any significant differences in the target-aligned burst
observed at any of the CTOAs tested.

On the basis of these observations, we hypothesize that
interactions between the cue- and target-related sensory signals
produce these changes in behavior. Compared with visual
stimuli, auditory stimuli evoke weaker responses that occur
earlier in time (Table 1). We propose that these different
characteristics do not allow for the necessary interactions be-
tween the auditory cue and the visual target responses to take
place. We discuss how our data support this hypothesis by first
showing how these interactions lead to changes in the magni-
tude of the target-aligned response followed by a description of
how changes in this activity might lead to changes in behavior.
We also discuss why the auditory stimuli used in this study fail
to elicit attentional capture or IOR.

Attentional capture corresponds with overlap of cue
and target responses

Numerous behavioral studies have demonstrated that the
sudden onset of a stimulus reflexively captures our attention
(Jonides 1981; Jonides and Yantis 1988; Yantis and Jonides
1984, 1990). The early appearance of this effect and its inde-
pendence from the intentions of the observer (Remington et al.
1992; Theeuwes 1991, 1992) suggest that the capture of atten-
tion is a stimulus-driven, “bottom-up” mechanism (Fecteau
and Munoz 2003).

Using the cue-target task, we have shown that the capture of
attention is linked to a strong target-aligned signal that origi-

FIG. 6. Influence of cue condition and modality on
neuronal activity at the 160- and 610-ms CTOA. Each
point represents the mean peak in the target-aligned
burst of activity for an individual visually responsive
neuron, after a visual (A, C) or auditory (B, D) cue.
Points lying below the unity line indicate greater activity
in the SAME condition and vice versa. Across the popu-
lation, there was a highly significant trend for a stronger
burst of target-aligned activity in the OPPOSITE condition
compared with the SAME condition after visual cues at
the 160-ms CTOA (A, solid points, Wilcoxon signed
rank-sum test; P � 0.005) that was no longer significant
at the 610-ms CTOA (C, P � 0.20). No change in
activity was observed after auditory cues at either CTOA
(B, D, open points).
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nates from the interaction of the cue- and target-aligned activ-
ities. This interaction is schematized in Fig. 10. Visual cues
elicit a robust sensory response in SC neurons that occurs about
75 ms after the appearance of the cue. This response has been

shown for the population of visually responsive neurons in Fig.
10A. Because this initial phasic response to the visual cue
persists for �50–100 ms, cue-related activity will still be
present when the target-related response is registered by the
neuron after a 60-ms CTOA. This is shown as a solid black line
in Fig. 10B. The overlap between the cue- and target-aligned
activities allows the incoming target signal to build on the
cue-related activity resulting in a significantly stronger target-
aligned burst of activity compared with when the cue and target
appear at OPPOSITE locations (“Target,” Fig. 10B). The magni-
tude of the target-aligned burst in the OPPOSITE condition
(dashed black line, Fig. 10B) is further reduced, presumably
attributable to the local inhibitory network in the SC (Munoz
and Istvan 1998) that inhibits other areas of the SC when one
subpopulation is active (i.e., when the contralateral SC is
responding to the cue, the ipsilateral SC will be inhibited),
shown as the drop in baseline activity in Fig. 10B. Therefore
because the level of activity is reduced, additional time is
required to trigger a saccade.

The consequences of auditory cues, or lack thereof, strongly
support our contention. Compared with visual stimuli, auditory
stimuli elicit weaker responses that occur about 45 ms after the
stimulus appeared (Table 1). Moreover, so few neurons re-
sponded to the auditory stimuli resulting in a much weaker
response across the population, shown for the population of
aurally responsive neurons in Fig. 10A. Therefore there will be
no residual activity left for the target response to build on and
consequently no modulation of the response after auditory
cues; hence no change in behavior is observed (gray lines,
Fig. 10B) and so the capture of attention is not observed in
our study.

IOR corresponds to a weaker target-aligned response

Involvement of the SC in IOR was first proposed by Posner
and colleagues (1985) (see also Rafal et al. 1988) on the basis
of clinical findings. They found that patients suffering from
progressive supranuclear palsy, a Parkinson’s-like disorder that
affects various brain stem structures including the SC (Burn
and Lees 2002), did not exhibit IOR under conditions when
normal subjects or patients with Parkinson’s disease did. Since
then, converging lines of evidence from both clinical and
neurophysiological studies suggest a role for the SC in IOR
(Dorris et al. 2002; Sapir et al. 1999). However, although we

FIG. 7. Population activity in nonpredictive cue-target saccade task. Mean
(and SE) peak target-aligned activity for all visually responsive neurons (A).
Visual-cue trials are shown in black; auditory-cue trials are shown in gray.
Solid lines indicate trials where the cue and target appeared in the SAME

location; dashed lines represent trials where the cue and target appeared in
OPPOSITE locations (target in receptive field). B: mean activity for the OPPOSITE

condition subtracted from that of the SAME condition for peak target-aligned
activity. Values � 0 indicate greater activity in the OPPOSITE condition;
values � 0 indicate greater activity in the SAME condition. Asterisks indicate
statistically significant differences between the SAME and OPPOSITE conditions
(Wilcoxon rank-sum test, P � 0.05).

FIG. 8. Correlation between saccadic reaction time and
neural activity in the SC. A: trial-by-trial correlation of SRT
vs. peak magnitude of the target-aligned burst of activity for
a single sensory-motor neuron recorded from the intermedi-
ate layers of the SC at the 160-ms CTOA. This neuron
displayed a significant negative correlation between SRT and
neural activity. B: histogram of the Pearson correlation co-
efficients for SRT vs. target-aligned burst of activity for the
population of visually responsive neurons. Negative values
indicate that shorter SRTs are correlated with greater activ-
ity. Individual neurons with significant correlations (P �
0.05) are represented as solid bars.
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observe a neural correlate of IOR in the SC, what specific role
does the SC play?

When a visual target appears at the SAME location as the

visual cue, the magnitude of the target-aligned burst was sig-
nificantly reduced compared with when the cue and target
appear at OPPOSITE locations (Fig. 7; see also Dorris et al. 2002;

FIG. 9. Effect of nonpredictive cues on the sensory response to the target.
A: activity of a sensory-motor neuron showing how pretarget activation after
visual-cue onset elevates the baseline for the target response in the SAME

condition. Solid and dashed vertical arrows indicate the target-related response
(i.e., equal to the pretarget activity subtracted from the peak target-aligned
burst of activity) for the SAME and OPPOSITE conditions, respectively. B: mean
(and SE) target-related response magnitude for all visually responsive neurons.
Visual-cue trials are shown in blackl auditory-cue trials are shown in gray.
Solid lines indicate trials where the cue and target appeared in the SAME

locationl dashed lines represent trials where the cue and target appeared in
OPPOSITE locations. C: mean activity for the OPPOSITE condition subtracted from
that of the SAME condition for peak target-aligned activity. Values � 0 indicate
greater activity in the OPPOSITE condition; values � 0 indicate greater activity in the
SAME condition. Asterisks indicate statistically significant differences between the
SAME and OPPOSITE conditions (Wilcoxon rank-sum test, P � 0.05).

FIG. 10. Proposed mechanism for attentional capture and inhibition of
return in the SC. A: visual and auditory cue–aligned responses for the popu-
lation of visual and bimodal neurons (n � 49). Visual cues evoke a robust,
phasic sensory response that is often followed by increasing pretarget activity.
Auditory cues evoke short latency, weak, and abrupt responses. B: proposed
mechanism for attentional capture. When a visual cue (solid black line) is
presented into the response field of neurons in the SC, they respond with a
burst of action potentials. This suppresses the activity of neurons that are not
responding to the cue (shown as the drop in baseline for the OPPOSITE condition,
dashed black line). When the target later appears, summation of the cue- and
target-aligned responses increases the level of activity so that when the
motor-related activity begins to accumulate; a saccade can be triggered sooner
compared with the other conditions. No such overlap of the cue- and target-aligned
responses occurs after auditory cues; hence no attentional capture is seen. Like-
wise, because of the suppression in the OPPOSITE condition, the level of activity is
reduced and additional time is required to trigger a saccade. C: inhibition of return
in response to visual cues occurs because of the reduction in the target-aligned
response, which, despite the presence of residual cue activity, still results in
significantly reduced activity. This reduces the level of activity on which the
motor-related activity will build and consequently increases the time required to
surpass saccadic threshold and trigger a saccade. There is no modulation of the
response after auditory cues; hence no change in behavior is observed.
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Fecteau and Munoz 2003). This reduction occurred despite an
increase in pretarget activity (Fig. 9) so that the net activity was
still weaker compared with when the two stimuli are presented
to OPPOSITE locations, particularly at the 160-ms CTOA. A
weaker target-aligned burst of activity provides a lower amount
of activity on which the motor-related activity will build and as
such, the time required to trigger a saccade is increased (Fig.
10C, see following text). This reduction in activity was not
observed after auditory cues, which accounts for why the SRTs
for auditory-cue trials were unaffected. Furthermore, it ap-
peared that the OPPOSITE condition was facilitated (see follow-
ing text), which further augmented the IOR effect. These data
represent a link between a sensory event and the ultimate
behavior, supporting the theory that IOR in this particular
oculomotor task is driven by sensory interactions between the
cue and target.

One question that has yet to be addressed is what is/are the
physiological mechanism(s) underlying this modulation of the
target-related response after a visual but not auditory cue? One
immediately obvious possibility is that visuomotor neurons in
the SC are directly inhibited, either from local sources (e.g.,
fixation neurons in the rostral SC; Munoz and Wurtz 1993) or
by external projections (e.g., substantia nigra pars reticulata;
Hikosaka and Wurtz 1983; Wurtz and Hikosaka 1986). How-
ever, Dorris and colleagues (2002) provided critical evidence
suggesting this is not the case. In a similar cue-target saccade
task as used in the current study, they applied microstimulation
to the SC instead of presenting a target for the purposes of
evoking a saccade. Contrary to what might be expected if the
SC were being directly inhibited, they found that evoked
latencies were shorter when stimulation was applied to the
SAME side as that which responded to the cue, which is likely
attributable to the microstimulation combining with increases
in pretarget activity.

Another possibility therefore is the SC is receiving reduced
visual inputs from structures earlier in the visual pathway (e.g.,
retina, lateral geniculate nucleus, primary visual cortex). This
is supported by previous findings showing similar reductions in
the target responses of neurons in the superficial layers of the
SC (Dorris et al. 2002; Robinson and Kertzman 1995) and
parietal cortex (Robinson et al. 1995) and could therefore
represent a common feature of the magnocellular pathway.
Neurons in this pathway may be unable to respond fully to the
target when presented to the SAME location. Because this path-
way is less concerned with physical properties of visual stimuli
(e.g., color, shape) and more with spatial and temporal rela-
tionships between stimuli, this sensory-based mechanism may
help account for the observations that led researchers to theo-
rize that IOR is an adaptive strategy meant to maximize the
efficiency of visual search (see Klein 2000). The absence of
such an effect after auditory cues further supports a reduction
in visual inputs driving the knockdown of the visual response
in IOR. Neurons in the intermediate layers of the SC represent
one of the earliest sites of crossmodal convergence at the level
of the individual neuron. Sensory neurons earlier in the visual
and auditory pathways will respond to visual or auditory stim-
uli—but not both—and so the auditory cue should have no
direct effect on the discharge properties of neurons earlier in
the visual pathway.

How do changes in the target-aligned responses link to
changes in SRT?

In the preceding sections, we have described how interac-
tions between the cue and target result in changes to the
magnitude of the target-aligned burst. How then do these
changes result in changes in behavior? Previous studies have
suggested that neural activity must accumulate toward a certain
level of activity, defined as the saccadic threshold, before a
saccade will be initiated (Carpenter and Williams 1995; Gold
and Shadlen 2000; Hanes and Schall 1996). Factors that affect
when saccadic threshold is exceeded will therefore have a
strong influence on SRT.

Shortly after the onset of the target-aligned burst, activity
related to the generation of the motor output will begin to
accumulate toward saccadic threshold (“Motor”; Fig. 10, B and
C). Even though the target-aligned burst may have decayed
somewhat by this time, the “starting point” (horizontal dashed
lines, Fig. 10, B and C) for the motor activity will still be linked
to the magnitude of the initial target-aligned burst. When the
target-aligned response is strong, as is the case with the SAME

condition at the 60-ms CTOA (Fig. 10B) and with the OPPOSITE

condition at the 160- and 610-ms CTOAs (Fig. 10C), the neural
activity will exceed saccadic threshold first, thus triggering a
saccade with a shorter SRT.

Facilitation to novel locations?

Another facet of IOR that we have not considered up to now
is the facilitated responding to the OPPOSITE side (i.e., novel
locations; see Bennett and Pratt 2001; Pratt and Abrams 1999).
At the 160-ms CTOA, where IOR was strongest, in addition to
observing a reduction in the magnitude of the target-aligned
activity in the SAME condition that was associated with an
increase in SRT, we also observed an increase in the magni-
tude of the target-aligned activity (Fig. 7) coupled with a
decrease in SRT for the OPPOSITE condition (Fig. 2) compared
with the auditory-cue trials or the visual-cue trials at the other
CTOAs. One possibility is that this facilitation is being gener-
ated locally, within the SC. While one subpopulation of neu-
rons in the SC are responding to the cue, neurons in the
opposite side SC are being inhibited because of the widespread
inhibitory network (Mize et al. 1991; Munoz and Istvan 1998).
When the visual target later appears at the OPPOSITE location as
the cue, neurons that were previously inhibited may be able to
respond with greater activity because of a postinhibitory re-
bound/excitation mechanism (e.g., Nishimura et al. 1992;
Okada et al. 1990; Syed et al. 1990). Biophysical studies have
demonstrated that, after a period of inhibition, neurons can
discharge with increased frequency compared with whether no
previous inhibition was present. For example, in a study ex-
amining saccadic suppression, the phenomenon whereby visual
inputs are suppressed during saccadic eye movements, Zhu and
Lo (1996) demonstrated that stimulating the deeper layers of
the SC resulted in inhibition of neurons in the lateral geniculate
nucleus that was followed by a period of facilitation shortly
after the initial stimulation pulse. If such a mechanism were
functioning in our task, this could be expressed as an enhanced
target-related response over that obtained in the neurons that
responded to the cue. Further investigation will be necessary to
support or refute this theory but it nonetheless illustrates how
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sensory processes related to the cue response might result in
changes in the magnitude of the target-aligned burst of activity
and subsequent changes in behavior.

Why no crossmodal attentional biases in our task?

The monkeys in our study did not exhibit either reflexive
attentional capture or IOR in response to auditory cues. Early
crossmodal facilitation has been demonstrated in detection
tasks (e.g., Macaluso et al. 2000; McDonald et al. 2000).
However, in the current study that used an oculomotor task, the
auditory cues used failed to evoke reflexive attentional capture,
presumably because the amount of residual activity in the SC
after the auditory cue was insufficient to significantly affect the
magnitude of target-aligned activity at the 60-ms CTOA,
which would have directly affected the motor output of the SC.
The lack of IOR after auditory cues can also be accounted for
by the differences in the visual versus auditory-cue response
properties and their subsequent effect on the target-related
response, as outlined in the previous sections.

This does not, however, explain why several other studies
using humans have been able to elicit crossmodal IOR after
presentation of an auditory cue (e.g., Reuter-Lorenz et al. 1996;
Spence and Driver 1998; Tassinari et al. 2002). The specific
task conditions in these aforementioned studies differ signifi-
cantly from our own and it is likely that these differences may
account for their ability, and our failure, to evoke crossmodal
IOR. For example, using a visual detection task, Reuter-Lorenz
and Rosenquist (1996) were unable to induce IOR after audi-
tory cues unless subjects were instructed to first make saccades
to the cue and then return to fixation before target presentation.
They argued that auditory stimuli alone were unable to suffi-
ciently activate the requisite oculomotor systems necessary to
induce IOR. However, by having subjects generate an oculo-
motor response to the cue, the oculomotor system was engaged
and therefore IOR was presumably more likely to occur.

Similarly, Spence and Driver (1998) demonstrated IOR to a
visual target after an auditory cue if an auditory fixation point
was used to redirect attention back to fixation after cue pre-
sentation. IOR was not observed, however, if a visual fixation
point was used to redirect attention. In this case, the auditory
modality is given increased salience, not because it was the
target for a saccade but because it was being used to draw
attention to several different locations in a given trial and was
critical to the subjects’ being able to perform the task correctly.
It should be noted that in both above cases, subjects were
required to generate responses to auditory stimuli, whether
they were overt orienting movements or detection responses.
We would argue that this fact alone introduces additional
influences that will affect the outcome.

In conclusion, altogether we have shown that the summation
of overlapping sensory signals in the SC can result in atten-
tional capture. We have confirmed that IOR corresponds to
reductions in the target-aligned response that scale with the
difference in SRT. Finally, we have provided a neurophysio-
logical basis for why the auditory stimuli used in our study fail
to evoke either effect. Although these results support the in-
volvement of the SC in reflexive covert orienting, it remains to
be seen what is driving the changes in the target-related re-
sponses.
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