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Abstract Many high-prevalence neurological disorders

involve dysfunctions of oculomotor control and attention,

including attention deficit hyperactivity disorder (ADHD),

fetal alcohol spectrum disorder (FASD), and Parkinson’s

disease (PD). Previous studies have examined these deficits

with clinical neurological evaluation, structured behavioral

tasks, and neuroimaging. Yet, time and monetary costs

prevent deploying these evaluations to large at-risk popu-

lations, which is critically important for earlier detection

and better treatment. We devised a high-throughput, low-

cost method where participants simply watched television

while we recorded their eye movements. We combined eye-

tracking data from patients and controls with a computa-

tional model of visual attention to extract 224 quantitative

features. Using machine learning in a workflow inspired by

microarray analysis, we identified critical features that

differentiate patients from control subjects. With eye

movement traces recorded from only 15 min of videos, we

classified PD versus age-matched controls with 89.6 %

accuracy (chance 63.2 %), and ADHD versus FASD versus

control children with 77.3 % accuracy (chance 40.4 %).

Our technique provides new quantitative insights into which

aspects of attention and gaze control are affected by specific

disorders. There is considerable promise in using this

approach as a potential screening tool that is easily

deployed, low-cost, and high-throughput for clinical disor-

ders, especially in young children and elderly populations

who may be less compliant to traditional evaluation tests.

Keywords ADHD � FASD � Parkinson’s disease �
Attention deficits � Eye tracking

Introduction

Visual attention and eye movements enable us to interact

with complex environments by selecting relevant infor-

mation to be processed in the brain. To properly allocate

attention, a network of brain resources is engaged, from

low-level visual processing to motor control of gaze ori-

enting [1]. This renders visual attention vulnerable to

neurological disorders. Several neuropsychological and

neuroimaging studies have demonstrated that damage in

different areas of the attentional network can impair
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distinct aspects of task performance or can reveal unusual

patterns of brain activity in laboratory tasks that test for

specific aspects of attention [2]. However, while in-depth

clinical evaluation, structured behavioral tasks, and neu-

roimaging are extremely valuable and are the current gold

standard for identifying particular impairments, they suffer

from limitations that prevent their large-scale deployment:

time and cost by limited numbers of medical experts, and

inability of some patients (e.g., young children or some

elderly) to either understand or comply with structured task

instructions, or with the testing machinery or protocol.

Our core hypothesis is that natural attention and eye

movement behavior—like a drop of saliva—contains a

biometric signature of an individual and of her/his state of

brain function or dysfunction. Such individual signatures,

and especially potential biomarkers of particular neuro-

logical disorders, which they may contain, however, have

not yet been successfully decoded. This is likely because of

the high dimensionality and complexity of the natural

stimulus (input space), of the stimulus to behavior transfer

function (brain function), and of the behavioral repertoire

itself (output space). We devised a simple paradigm that

does not require expensive machinery, involves no prepa-

ration and no cognitive task for participants, is completed

in 15 min, is portable for use outside large medical centers,

and (after initial training of the machine learning algo-

rithms) autonomously provides detailed decoding of an

individual’s signature.

We validated our technique with one neurodegenerative

and two neurodevelopmental disorders that have been

shown to involve deficits in visual attention and oculomotor

functions. These deficits were exploited by our algorithm

with features corresponding to oculomotor control, stimu-

lus-driven (bottom-up) attention, and voluntary, contextual

(top-down) attention. We first tested the algorithm on

elderly participants with the neurodegenerative disorder,

Parkinson’s disease (PD) and validated the signature of PD

discovered by our algorithm, because the behavioral deficits

of PD are well understood. In short, PD is characterized by

degeneration of dopaminergic neurons in the substantia

nigra pars compacta, affecting basal ganglia processes,

which subsequently impairs body movement (tremor, bra-

dykinesia) and oculomotor movement (slower and shorter

saccades) [3–5]. PD also impairs the prefrontal, premotor,

motor, and basal ganglia networks [6], leading to deficits in

attentional control; in particular, PD patients are less suc-

cessful in inhibiting automatic saccades to a salient stimulus

compared to controls [3, 4]. Therefore, we expected PD

patients to show deficient oculomotor control, weakened

top-down control, and stronger bottom-up guidance in

natural viewing.

Next, we tested the algorithm on the two neurodevel-

opmental disorders at the other end of the age spectrum:

attention deficit hyperactivity disorder (ADHD) and fetal

alcohol spectrum disorder (FASD). Patients with ADHD or

FASD demonstrate comparable deficits in visual attention

tasks [7–11], but for different reasons. ADHD in childhood

is characterized by delayed cortical maturation, dysfunc-

tion in dopamine transmission in the frontal cortex and/or

basal ganglia [12], and decreased activity in frontal and

striatal regions [13, 14]. These deficits result in difficulties

in inhibiting premature responses (weakened top-down

control), and thus patients appear more stimulus-driven

(stronger bottom-up guidance) [7]. Oculomotor function

seems relatively unimpaired, though previous studies have

shown inconsistent findings [11]. On the other hand, FASD

is caused by excessive maternal alcohol consumption,

which results in malformation of the cerebral cortex, basal

ganglia and cerebellum, and reduced overall brain and

white-matter volumes [10, 15]. Deficits include impaired

oculomotor functions [16], decreased top-down attentional

control [17], and weakened bottom-up attention, possibly

due to deficient visual sensory processing [18]. The

weakened bottom-up guidance of children with FASD

could be a differential factor between FASD and ADHD,

because children with ADHD appear to be more stimulus-

driven. For example, in pro-/anti-saccade tasks (where a

pro-saccade requires participants to initiate an automatic

eye movement to a visual stimulus, and an anti-saccade

requires participants to make a voluntary eye movement in

the opposite direction) [19], children with ADHD or FASD

both made more directional errors in the anti-saccade task

(implying difficulty in inhibiting automatic responses), but

only children with FASD made more directional errors and

had longer reaction time in the pro-saccade task (implying

weakened stimulus-driven guidance) [7, 9]. While diag-

nosis of some subtypes of FASD is often assisted by the

presence of dysmorphic facial features [20], the majority of

affected children do not exhibit facial dysmorphology, and

when these features are not obvious, there is a significant

risk of misdiagnosis with ADHD [21]. Thus, the differen-

tial classification of ADHD versus FASD provides a dif-

ficult challenge for our method.

Methods

The experimental procedure is summarized in Fig. 1a.

Participants’ eye traces were recorded while watching

20 min of video. Participants were instructed to ‘‘watch

and enjoy the clips.’’ Five minutes of video was excluded

from the analysis because of different lengths of the clip

snippets for purposes beyond the scope of this study (see

Supplementary Methods: Stimuli, Data Acquisition for

detail). Each 30-s video clip was composed of 2–4-s clip

snippets of unrelated scenes to minimize predictability and
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to emphasize attentional deployment in new environments.

Saliency maps (Fig. 1b; topographic maps that predict the

locations of visually conspicuous stimuli based on low-level

image properties; Supplementary Methods: Computing

Saliency Maps from Stimuli) were computed for every

frame [22], and correlations between model-predicted

salience values and measured human saccade endpoints

(gaze) were computed (Fig. 1c–e). Based on previous

studies [3–18] of how the disorders may affect eye move-

ment, we extracted a large number of features from the eye

movement recordings (categorized into oculomotor-based,

saliency-based, and group-based features; see Methods:

Features) and built a classifier to differentiate patients and

controls based on these features. We also analyzed the

features for biomarkers through recursive evaluation,

selection, and classification. Our workflow was inspired by

successful application of advanced machine learning tech-

niques to microarray analysis [23], here using similar

techniques for the first time in high-throughput analysis of

natural eye movement behavior.

Standard protocol approvals and patient consent

All experimental procedures were approved by the Human

Research and Ethics Board at Queen’s University, adhering

to the guidelines of the Declaration of Helsinki and the

Canadian Tri-Council Policy Statement on Ethical Conduct

for Research Involving Humans.

Participants

This study describes data collected from 21 children with

ADHD, 13 children with FASD, 14 elderly PD participants,

18 control children, 18 young controls, and 24 elderly

controls (Table 1; Supplementary Methods: Participants,

Diagnostic Criteria).

Features

From eye traces recorded while participants viewed short

videos, we extracted three types of features that we
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Fig. 1 Experimental and classification paradigms. a Participants

freely viewed scene-shuffled videos (SV), and their eye movements

were recorded. Saliency maps of each SV were computed using a

computational model that mimics early visual processing. Next, we

used the recorded eye movements to compute (1) oculomotor-based

saccade metrics, (2) saliency-based correlations between saliency

maps and gaze (bottom-up attention), and (3) group-based similarities

in spatiotemporal distributions of gaze with reference to a database of

control eye traces (top-down attention). These features were used in a

classifier with a recursive feature selection method to identify

important features that distinguished populations. b Ten saliency

maps of different features (color, intensity, etc.) were computed, here

illustrated for the video frame shown in (a) under ‘‘Saliency maps.’’

Brighter shades of grey indicate stronger feature contrast at the

corresponding image locations; for example, the red and yellow
flowers between the two people elicit a strong response in the color

contrast map. c To compute saliency-based or group-based features,

each saliency map was sampled around the saccade target location

(red circle) when a participant initiated a saccade (red dot). At the

same time, 100 map values were randomly sampled from the map as a

baseline (blue circles) for comparison. d Histograms were generated

from both the human and random sample values. e Differences

between human and random histograms were further summarized by

ordinal dominance analysis to quantify the extent to which human

observers gazed towards higher salience values than expected by

chance in terms of the area under the curve (AUC, yellow region) (see

Supplementary Methods: Computing Features for more detail)
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hypothesized would be differentially affected by disorders.

First, oculomotor-based features were computed (e.g.,

distributions of saccade amplitudes and fixation durations)

as they might reveal deficiencies in motor control of

attention and gaze. Second, saliency-based features corre-

lated participants’ gaze to predictions from a computational

model of visual salience [22], which has been previously

shown to significantly predict which locations in a scene

may more strongly attract attention of control subjects. We

hypothesized that these features would reveal deficits in

reflexive, stimulus-driven, or so-called ‘‘bottom-up’’

attention. The third type, group-based features, captured

deviations in participants’ gaze allocation onto our stimuli

compared to a normative group of young adult controls.

These features, we posited, might reveal impaired voli-

tional, subject-dependent, or ‘‘top-down’’ attentional con-

trol, especially if differences were observed in group-based

but not saliency-based features. Together, we utilized all

these features to classify participants into clinical groups

based on natural viewing behavior, the complexity of

which imposed challenges in data analysis, but also

revealed rich and profound information about the different

populations.

The classifiers were built to discriminate patients from

controls based on 15 core features from our three types:

four oculomotor-based core features (distributions of sac-

cade duration, inter-saccade interval, saccadic peak

velocity, and saccade amplitude), ten saliency-based core

features (differential distributions of salience values at

human gaze vs other locations, using the ten saliency maps

of Fig. 1b), and one group-based core feature (correlation

between a patient’s gaze and aggregate eye traces from a

normative group of young adult controls, Fig. 1a). Each

core feature was represented by several sub-features to

capture the dynamics of free-viewing: each oculomotor-

based core feature was subdivided into 12 sub-features [3

measures (lower quartile, medium, upper quartile) 9 4

saccades (the 1st, 2nd, 3rd, and all saccades on each 2–4-s

clip snippet) = 12 sub-features]; each saliency-based core

feature was subdivided into 16 sub-features: 4 measures

[area under the ROC curve (AUC; see Supplementary

Methods: Computing Features) for low/medium/high sal-

ience bins] 9 4 saccades, as was each group-based core

feature: 4 measures (AUC, low/medium/high similarity

bins) 9 4 saccades. Thus, in total, 15 core features subdi-

vided into 224 sub-features were used (Supplementary

Table S2).

Classification and feature selection

Feature selection is a popular machine learning method to

identify useful features and overcome situations where the

number of features is possibly larger than the number of

samples when training a classifier [24]. We performed

feature selection with support vector machine-recursive

feature elimination (SVM-RFE) [25], which has been used

with great success in other fields (e.g., cancer classification

with microarrays [25]). SVM-RFE consists of training a

classifier and discarding the weakest feature iteratively

until all features are eliminated. We used SVM-RFE to

differentiate PD patients from elderly controls (binary

classification), and multiple SVM-RFE (MSVM-RFE) [26]

to distinguish children in the ADHD, FASD, and control

groups (3-way classification). All classification accuracies

reported were obtained using these two feature selection

methods.

Performance of each classifier that used a particular

selected subset of features was computed using 30 itera-

tions of a repeated leave-one-out bootstrap validation [27].

This validation method was similar to the standard

leave-one-out validation, which leaves one participant out

for testing, but here the classifier was trained on the

remaining participants that were bootstrapped (sample with

replacement) ten times the number of these remaining

participants. The performance was tested against permuted

chance, which was the classification accuracy of a classifier

trained on the same bootstrap structure but with randomly

permuted class labels (class labels were randomly rear-

ranged). Because classification accuracy varied with the

number of features in the process of RFE, we tested the

performance of classifiers by comparing the maximum

accuracy obtained by the classifier trained with true labels

to that obtained by the classifier trained with randomly

permuted labels (permuted chance, the chance referred to

in this article unless stated otherwise), regardless of how

many features each classifier used to obtain maximum

Table 1 Demographic data (see Supplementary Table S1 for full

demographic data)

n Age (year) Sub-type/severity Medication

Ctrl. elderly 24 70.33 ± 7.53

PD 14 67.43 ± 6.62 Hoehn and Yahr Yes: 14

Stage 2: 6 No: 0

Stage 2.5: 6

Stage 3: 2

Ctrl. young 18 23.17 ± 2.60

Ctrl. child 18 10.67 ± 1.82

ADHD 21 11.19 ± 1.83 Inattentive: 4 Yes: 16

Hyperactive: 0 No: 5

Combined: 19

FASD 13 12.31 ± 2.10 FAS: 4 Yes: 10

pFAS: 2 No: 3

ARND: 7
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accuracy (one-tail paired t test; Supplementary Methods:

Classification and Feature Selection). All tests were Bon-

ferroni corrected.

Results

Classifying PD and controls

Classification accuracy for 14 patients versus 24 age-mat-

ched controls reached 89.6 % (chance: 63.2 %, obtained by

performing the same classification procedure with per-

muted class labels; Fig. 2a), with only 5 of 224 sub-fea-

tures selected as most discriminative by the process of

feature elimination (SVM-RFE). The confusion and sen-

sitivity/specificity matrices reveal that the classifier made

slightly more false negatives than false positives as we

aimed to maximize overall classification performance. In

scenarios where the classifier may be used for screening

purposes, sensitivity of the classifier can be increased by

assigning higher costs to missed PD patients and lower

costs to false positives during training.

Our method not only differentiated PD from elderly

controls [one-tail paired t test, t(29) = 23.07, p \ 0.01],

but also provided information about how PD affects eye

movements, obtained by separately studying classification

accuracy for oculomotor-based, saliency-based, or group-

based features (Fig. 2b). PD patients demonstrated motor

deficits as revealed by classification differences between

them and controls in oculomotor features [considering

only the 48 oculomotor-based sub-features, accuracy was

86.4 %, t(29) = 28.02, p \ 0.01]. Oculomotor deficits

have been attributed to dysfunction in the basal ganglia

[28–30], crucial for voluntary saccade control [19].

Patient’s top-down attention also differed from elderly

controls [16 group-based sub-features, 74.6 %, t(29) =

11.58, p \ 0.01], in agreement with previously reported

impairment in voluntary attention, involving cortical and

sub-cortical attention networks [28, 29, 31–33]. How-

ever, counter to our expectation that lower top-down

control may give rise to higher reliance upon stimulus-

driven salience, bottom-up attention of PD patients

seemed unaffected, as saliency-based features showed no

overall differences [160 saliency-based sub-features,

63.16 %, t(29) = -4.10, n.s]. It is possible that any

higher reliance upon visually salient stimuli to guide

gaze may have been offset by impaired salience com-

putation because of deficient early visual processing in

PD patients, as reported in previous laboratory studies

[34] [see Supplementary Discussion of Neurological

Implications: Parkinson’s disease (PD) for more details

relating the findings from previous studies to the results

from classification].

At a finer granularity, our method also permitted

investigating whether each of our 15 core features was

affected by PD. We tested 15 separate classifiers, each

using only the 12 or 16 sub-features of a given core feature

(with SVM-RFE). This yielded a 15-component biometric

signature of PD (Fig. 2c). During natural viewing, PD

patients demonstrated motor deficits as their saccades were

of shorter amplitude and duration [classification accuracy:

t(29) [ 9.62, p \ 0.01; direction of the effect: two-sample

t test, t(36) [ 2.73, p \ 0.01]; peak velocity and inter-
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Fig. 2 Classification performance in differentiating PD patients from

elderly controls at three granularities of starting feature sets: a all

features, b the 3 feature types, and c the 15 core features (biometric

signatures). a Starting with all 224 sub-features, PD patients were

distinguished from elderly controls with 89.6 % accuracy after feature

selection (SVM-RFE). Each row in the confusion matrix represents

actual classes, and each column predicted classes. b PD and elderly

controls differed significantly in oculomotor (starting with 48 sub-

features) and group-based behavior (16 sub-features), but not in

saliency processing (160 sub-features). Asterisks indicate cases where

the classifiers performed significantly better than permuted chance

(computed from training a classifier with randomly permuted class

labels). Dashed line represents prior chance based on the number of

controls and patients. c PD patients exhibited differences in saccade

amplitude, duration, peak velocity, inter-saccade interval, intensity

variance processing, texture saliency processing, and similarity to

normative young observers. This pattern of differences yields the

15-component biometric signature of PD. Dashed line is the prior

chance. Background colors separate oculomotor-based, saliency-

based, and group-based features from left to right (error bars indicate

95 % confidence intervals after Bonferroni corrections). Significance

level: p \ 0.01, one-tailed paired t test (df = 29)
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saccade interval were also affected [t(29) [ 6.31,

p \ 0.01], but without a unified upward or downward

direction of effect among the 12 sub-features (Supple-

mentary Methods: Direction of Effect). These observations

are consistent with earlier structured-task studies, which

showed shorter and slower voluntary saccades of PD

patients toward pre-determined visual locations [3, 5, 28,

35], with less impairment for visually guided saccades [28,

35]. The classifier also found that PD and elderly controls

differed in intensity variance [t(29) = 4.96, p \ 0.01] and

texture contrast [t(29) = 8.36, p \ 0.01], though with

mixed upward and downward effects among the involved

sub-features, suggesting complex interactions between

deficits that affect behavior in opposite directions: e.g.,

weakened top-down control (stronger bottom-up) and

impaired saliency computation (weaker bottom-up). Defi-

cits in voluntary control and top-down attention were also

revealed by different similarities to our normative young

observers between PD patients and elderly controls

[t(29) = 7.06, p \ 0.01].

Classifying ADHD, FASD, and control children

Classification accuracy with MSVM-RFE for 21 children

with ADHD vs. 13 children with FASD vs. 18 control

children reached 77.3 % (chance 40.4 %) with 19 of all

224 sub-features (Fig. 3a). With these 19 features, the

average two-way classification accuracy for ADHD versus

control was 83.3 % (chance 53.8 %); FASD versus control

was 79.2 % (chance 58.1 %); ADHD versus FASD was

90.4 % (chance 61.8 %). Rates of miss and false alarm

errors were balanced, except for a slightly higher miss rate

for FASD, as the classifier aimed to maximize overall

accuracy.

Our method further examined which of the three feature

types contained differential information among the three

groups of children (Fig. 3b). Classification accuracies were

significantly above chance with the saliency-based [50.8 %,

t(29) = 4.04, p \ 0.05], but not with the oculomotor-based

features [40.5 %, t(29) = -5.28, n.s] and the group-based

features [45.7 %, t(29) = 1.03, n.s.]. When comparing each

pair of the three child groups, first, children with ADHD

and controls were distinguished significantly in saliency-

based features [78.2 %, t(29) = 12.68, p \ 0.01]; second,

children with FASD and controls differed in both saliency-

based features [77.6 %, t(29) = 9.95, p \ 0.01] and group-

based features [69.8 %, t(29) = 6.01, p \ 0.01]; lastly,

children with ADHD and FASD showed no differentiability

by each feature type alone, but they could be distinguished

with all feature types together [t(29) \ 22.96, p \ 0.01].

Although we focus on classification performance, these

results are in line with earlier studies that showed how

children with ADHD have difficulties in inhibiting

premature responses and thus appear more stimulus-driven

[7], as well as studies that demonstrated how children with

FASD have atypical top-down [8, 9, 17] and bottom-up [18]

attentional control (see Supplementary Discussion of

Neurological Implications: ADHD, FASD, and ADHD

versus FASD for more details pertaining to previous studies

and the present results). However, when we examined

whether the saliency-based and group-based sub-features

showed larger feature values in one population than in the

other, we found mixed directions of effect among the sub-

features of both feature types, indicating that the disorder

impacts natural viewing behavior in more than one single

unified manner (e.g., impaired response inhibition [7, 9],

but also possibly weakened early visual processing [36–

38]). The quantitative predictions of our classifier for every

sub-feature provide for the first time a rich basis to further

investigate these complex effects from a neurological

viewpoint.

At the level of the 15 core features, our method yielded

clearly distinct biometric signatures for ADHD versus

FASD (Fig. 3c), thus successfully teasing apart the two

disorders along 15 important dimensions. For children with

ADHD, the best feature differentiating them from control

children was texture processing [t(29) = 15.67, p \ 0.01];

children with ADHD showed a higher correlation with

texture contrast [two-sample t test, t(37) = 2.75, p \ 0.01;

Fig. 3c], in line with previously reported tactile texture

sensitivity [39–41]. Thus, the current results suggest this

may not be limited to the tactile domain. Propensity to look

toward color contrast [36, 37] [t(29) = 5.63, p \ 0.01] and

oriented edges [t(29) = 6.72, p \ 0.01] was also discrim-

inative between children with ADHD and controls. Ori-

ented edges are important to perceptually construct the

contour and shape of objects. For children with FASD, line

junctions, overall salience, and texture contrast were dis-

criminative [t(29) [ 4.92, p \ 0.01]. To our knowledge, no

previous study has investigated how ADHD might affect

processing of oriented edges, nor how different domains of

salient features may be affected by FASD. The discovery

of these features by our classifier thus suggests interesting

new research directions.

Sub-features selected by the SVM-RFE process

Finally, we investigated which collections of sub-features

best differentiated the populations based on the result of

feature selection (SVM-RFE). The top five sub-features

that classified PD from elderly controls and their normal-

ized feature values are shown in Fig. 4a. The feature

selection method found a collection of five oculomotor

sub-features that reliably differentiate PD from elderly

controls. On the other hand, the top 19 features for dif-

ferentiating each pair of the three child populations

280 J Neurol (2013) 260:275–284

123



(ADHD, FASD and control) spanned all three broad fea-

ture types (Fig. 4b). While some core features of the

selected sub-features failed to differentiate the populations

when considered in isolation, they are important comple-

mentary features for the classifiers to separate the groups.

Obviously the pattern of feature values observed here is

complex, indicating that sophisticated classifiers were

indeed necessary to discover the subsets of features that

yielded the best classification accuracy. To visualize how

well our approach was able to cluster individuals into

separate groups, we further reduced the dimensionality of

our results using Linear Discriminant Analysis, which finds

axes that best separate each pair of groups (Fig. 4c, d). This

analysis allowed us to validate our method by demon-

strating clearly distinct clusters based on the features

selected by our classifiers. We suggest that similar clus-

tering techniques could be employed in future studies of

other disorders and to possibly discover different sub-

population clusters within patient groups that were previ-

ously considered homogeneous per standard medical

assessment.

Discussion

This study revealed different biometric profiles of oculo-

motor function and attention allocation among PD, ADHD,

and FASD patient groups through quantitative analysis of

natural viewing eye traces. Our automated SVM-RFE

process discovered that PD patients were best
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Fig. 3 Classification performance for children with ADHD, FASD,

and control children for: a all features, b the 3 feature types, and c the

15 core features (biometric signatures). a Starting with all sub-

features, children with ADHD, FASD, and control children were best

classified with 77.3 % accuracy (ADHD: sensitivity 80 %, specificity

90 %; FASD: sensitivity 73 %, specificity 91 %) after feature

selection (MSVM-RFE). Format is as in Fig. 2. b Classifying the

three child groups with different feature sets demonstrated that they

differed significantly in saliency-based behavior (upper-left sub-plot).

Children with ADHD differed from control children in saliency-based

features, whereas children with FASD differed from controls in both

saliency-based and group-based features, and children with ADHD

and those with FASD could only be distinguished with all three

feature types together. c The 15-component biometric signature of

ADHD and FASD. Children with ADHD compared to control

children demonstrated significantly different sensitivity in color

contrast and oriented edges, as well as increased sensitivity to texture

contrast. Children with FASD, in contrast, showed a different

signature that involved differences in similarity to young observers

in gaze distribution, sensitivity to line junctions, and sensitivity to

overall salience, as well as increased sensitivity to texture contrast.

Background colors separate oculomotor-based, saliency-based, and

group-based features from left to right (see Fig. 2 for the computation

of chance level, error bars, statistical tests, and significance level)
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discriminated from elderly controls by oculomotor-based

features, implying that motor deficits are more apparent

than attention deficits for PD patients during free viewing.

In contrast, children with ADHD or FASD were best dis-

tinguished from controls by saliency-based features, sug-

gesting that the disorders affect their bottom-up attention.

The disorders also influence overall attention allocation in

every patient group, as group-based features showed dif-

ferentiability for clinical and control populations (see

Supplementary Discussion for our interpretations of the

particular features identified by our method and the cor-

responding neurological implications in each disorder). By

identifying features that are most discriminative among

populations, our technique provides new insights into the

nature of the different disorders and their interactions with

attentional control. The encouraging results obtained here

with diseases that lie on both ends of the age spectrum

suggest that the proposed approach may generalize to

additional disorders that affect attention and oculomotor

systems. The fact that our paradigm alleviates the need for

structured tasks is of great importance because the

approach can be applied to a wider range of populations,

including very young children who cannot understand the

instructions of experiments or individuals who have cog-

nitive impairment.

Our method robustly differentiates disorders that may

have overlapping behavioral phenotypes (ADHD and

FASD) but that nonetheless affect visual processing dif-

ferently. Overall, we suggest that with natural scene videos,

participants’ natural viewing behaviors are evoked, and

their eye movement patterns contain unique and revealing

information about their cognitive and motor processes. One

of the strengths of this study is that it is a general frame-

work that could identify such information in several patient

populations. In the future, with better understanding of

differences in cognitive control, attention, and oculomotor

systems of patients with these disorders, the experiment

could be further shortened by selecting stimuli that maxi-

mally evoke different eye movement patterns between

populations. This would also provide for a better under-

standing of novel behavioral differences that were revealed

by this study, such as the discovery of edge processing

differences in children with ADHD (see Supplementary

Discussion: Future Directions and Study Limitations). In

summary, our method provides for the first time an

objective, automated, high-throughput, time- and cost-

effective tool that can screen large populations and that,

through clustering, may further discover new disease sub-

types and assist making more precise medical diagnoses.

Future benefits of our method may include earlier and more

accurate identification of neurological disorders and

subtypes.
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Fig. 4 Sub-features selected by SVM-RFE. a Normalized values for

the top five ranked sub-features selected by SVM-RFE for PD. Sub-

feature’s names were replaced by their corresponding core features

for simplicity (see Supplementary Fig. S1 for sub-feature names; e.g.,

two different sub-features of the velocity core feature were selected).

Feature values are standardized z-scores filtered by an arctangent

function. Rows represent the top five ranked sub-features. Columns
represent 38 participants, and the white vertical line separates the two

populations. b Normalized feature values for the top 19 ranked sub-

features selected by MSVM-RFE that best classified children with

ADHD, FASD, and control children. Note that most of the sub-

features discovered by the classifiers belonged to the saliency-based

feature type. Features and participants were re-arranged so that high

feature values were better clustered at the diagonal of the plot. c 14

PD and 24 elderly controls were separated into two different clusters

as revealed by linear discriminant analysis (LDA), which finds the

dimensions (L1 and L2) from the top five sub-features in (a) that best

distinguished the two groups. d Similarly, LDA found the three

dimensions (L1, L2, and L3) from the top 19 sub-features in (b) that

best differentiated every pair among 21 children with ADHD, 13

children with FASD, and 18 control children. The three child groups
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