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Abstract
The observation that cycles of sleep and wakefulness occur with a
periodicity fixed in time to match the rotation of the Earth on its
axis provided a key to unlock the first genetic code for a neurobe-
havioral pathway in flies and ultimately in mice. As a remarkable
outcome of this discovery, we have gained an unprecedented view of
the conserved genetic program that encodes a sense of time across all
kingdoms of life. The tools are now in hand to begin to understand
how important processes such as energy homeostasis and fuel uti-
lization are coordinated to anticipate daily changes in environment
caused by the rising and setting of the sun. A better understanding
of the impact of circadian gene networks on nutrient balance at the
molecular, cellular, and system levels promises to shed light on the
emerging association between disorders of diabetes, obesity, sleep,
and circadian timing.
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Circadian rhythm:
a biological rhythm
that persists under
constant conditions
with a period length
of ∼24 hours

Clock: a central
mechanism
controlling circadian
rhythms

Zeitgeber: an
entraining agent
such as light or food;
German for “time
giver”

OPENING QUOTE

We have unlocked time, as in the seven-
teenth century we unlocked space, and now
have at our disposal what are, in effect, tem-
poral microscopes and temporal telescopes
of prodigious power . . . . In this way, stuck
though we are in our own speed and time,
we can, in imagination, enter all speeds, all
time.—Oliver Sacks (127)

INTRODUCTION: THE
TEMPORAL BIOLOGY OF
METABOLISM

Although humans have been acutely aware
of the cyclical nature of their external envi-
ronment since ancient times, the idea of the
existence of an internal timekeeping system
was not considered until the early 1700s when
French astronomer Jean Jacques d’Ortous de
Marian observed that daily leaf movement of
the Mimosa plant persisted for several days
in constant darkness. Nearly a century later,
Alphonse de Candolle demonstrated not only
that endogenous rhythmicity was sustained in
the absence of external environmental cues,

but also that in constant darkness, this rhyth-
micity advanced to an earlier start each day.
However, despite these early observations,
it was not until the mid-1900s that it be-
came accepted that circadian rhythms were
not merely passive reflections of the environ-
mental light/dark cycle, but were rather de-
pendent upon an underlying internal endoge-
nous clock.

Circadian rhythms are such an innate part
of our behavior that we rarely pause to spec-
ulate why they even exist. Many physio-
logical processes, such as sleep-wake cycles,
locomotor activity, body temperature, hor-
mone secretion, and metabolism, are under
the control of circadian clocks. The approx-
imately 24-hour nature of the endogenous
clock maintains a periodicity fixed in time
to match the Earth’s rotation around its axis,
hence the term circadian (derived from the
Latin phrase circa diem, or about a day). To
remain in sync with their environment, circa-
dian clocks are reset or entrained on a daily
basis by zeitgebers, environmental cues such
as light that provide information about the
external time. A presumed advantage of the
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circadian system is that it enables organisms
to anticipate, rather than simply react to,
daily changes in the external light/dark en-
vironment, and it also allows synchroniza-
tion of behavioral and physiological processes
to the environment in order to optimize en-
ergy utilization, reproduction, and survival.
The ubiquity of the circadian clock in or-
ganisms as diverse as cyanobacteria, fungi,
fruit flies, birds, and mammals implies that it
confers an adaptive advantage to the organ-
ism. In plants, for example, transcripts encod-
ing proteins involved in flowering, nitrogen
fixation, and photosynthesis are synthesized
and degraded according to a 24-hour cy-
cle that matches the availability of sunlight
and conserves protein biogenesis during dark-
ness (62). Direct demonstration for a distinct
survival and competitive advantage to hav-
ing properly tuned circadian clocks and “cir-
cadian resonance” came from clever experi-
ments performed in Arabidopsis thaliana (49).
When plants harboring mutations that result
in altered period lengths were placed in an
environment with light/dark cycles that were
shorter, equal to, or longer than the endoge-
nous period length, those plants whose en-
dogenous clock matched that of the external
light/dark cycle had increased photosynthesis,
growth, and survival (49).

In vertebrates, reproductive function has
been shown to be under circadian control
(24, 171). Furthermore, mice with geneti-
cally disrupted circadian rhythms have re-
duced gonadotropin production, irregular es-
trous cycles, and high pregnancy failure rates
(106). A more general example suggesting
a link between clock function and fitness
in vertebrates is offered by the observa-
tion that chronic reversal of the light/dark
cycle results in decreased survival time in
cardiomyopathic hamsters (117). These ob-
servations suggest that the ability to sus-
tain an internal timekeeping mechanism
may have important implications for mainte-
nance of fitness, health, and longevity of the
organism.

Period: duration of
one complete cycle
in a rhythmic
variation

LINKS BETWEEN CIRCADIAN
RHYTHMS, SLEEP, AND HUMAN
HEALTH

There is now reason to speculate that disrup-
tion of circadian rhythms of physiology and
behavior may have broader implications for
human health. A long history of clinical epi-
demiology in humans indicates that myocar-
dial infarction, pulmonary edema, and hyper-
tensive crises all peak at certain times during
the day (98, 149). With advances in automa-
tion, communication, and travel, the pres-
sure to extend wakefulness or repeatedly in-
vert the normal sleep-wake cycle has become
widespread. Interestingly, association studies
have demonstrated an increased incidence of
obesity and cardiovascular disease among shift
workers, who are routinely subjected to ex-
tended and/or fragmented working hours (47,
77, 78). Furthermore, the average nighttime
sleep duration has decreased dramatically in
the past few decades, in parallel with a ram-
pant increase in obesity (147). Indeed, a num-
ber of epidemiological investigations have re-
ported that voluntary short sleep duration is
associated with increased body mass index
and elevated incidence of type 2 diabetes (65,
68, 102, 108, 155). Clinical studies have also
identified changes in many aspects of energy
metabolism following even just a few days of
partial sleep restriction. For example, healthy
subjects restricted to four hours of sleep for
six consecutive nights exhibited impaired glu-
cose tolerance and reduced insulin respon-
siveness following a glucose challenge, a pat-
tern indicative of aging and early diabetes
(169). Furthermore, self-reported short sleep-
ers had significantly reduced circulating levels
of the anorectic hormone leptin and increased
levels of the orexigenic hormone ghrelin
(155). These neuroendocrine changes could
explain, in part, reports of increased appetite
following sleep loss (148). Other changes
related to metabolic function in the short
sleepers included increased sympathoadrenal
tone, hypercortisolemia, and altered thy-
roid hormone turnover (148). Although these
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Dawn
phenomenon: an
increase in blood
glucose levels that
occurs prior to the
onset of the activity
period

Suprachiasmatic
nucleus (SCN):
hypothalamic region
containing the
“master circadian
pacemaker”

epidemiological and clinical studies have pro-
vided clues to possible links between sleep
and metabolic regulatory processes, specific
mechanisms underlying the effects of sleep
loss on energy metabolism need to be further
elucidated.

Circadian control of glucose metabolism
was recognized from early studies demon-
strating variation in glucose tolerance and in-
sulin action across the day (61, 163). In hu-
mans, it has been repeatedly demonstrated
that oral glucose tolerance is impaired in the
afternoon and evening compared to the morn-
ing hours (10, 22, 29, 74, 123). A similar de-
crease in glucose tolerance toward the evening
hours was observed in subjects exposed to a
constant rate of intravenous glucose infusion
for 24 hours (137, 162). The cyclical nature
of glucose tolerance has been ascribed to a
circadian effect on insulin sensitivity of the
peripheral tissues (13, 85, 88, 166) as well as
to a relative decrease in insulin secretion dur-
ing the evening hours (19, 29, 88, 103). Al-
though circadian fluctuations in plasma levels
of corticosterone have also been hypothe-
sized to account for the circadian rhythms of
glucose metabolism, this hypothesis remains
controversial because corticosterone, which is
known to decrease insulin sensitivity, peaks
at a time of day when insulin sensitivity is
greatest (10, 48, 163). Another example of
circadian regulation of glucose metabolism
is demonstrated by the so-called dawn phe-
nomenon, whereby glucose levels peak before
the onset of the activity period (11, 20). To-
gether, these data suggest that humans are
most tolerant to glucose when the plasma
glucose concentrations are highest prior to
the onset of activity. Finally, circadian regula-
tion of glucose metabolism is further indicated
by recent studies showing that destruction
of the hypothalamic suprachiasmatic nucleus
(SCN), believed to contain the “master circa-
dian pacemaker,” abolishes diurnal variation
in glucose metabolism in rats (85), and that
degeneration of the autonomic tracts link-
ing the SCN to liver similarly diminishes
the 24-hour rhythms in glucose levels (27).

However, despite the well-documented di-
urnal variation in glucose tolerance and in-
sulin sensitivity, the molecular mechanisms
underlying these phenomena are not yet well
understood.

Finally, evidence suggests that loss of circa-
dian rhythmicity of glucose metabolism may
contribute to the development of metabolic
disorders, such as type 2 diabetes, in both ro-
dents (115, 142, 165) and humans (146, 163).
For example, daily cycles of insulin secretion
and glucose tolerance are lost in patients with
type 2 diabetes (18, 163), as are daily variations
in plasma corticosterone levels and locomo-
tor activity in streptozotocin-induced diabetic
rats (115, 165). These findings indicate that
a critical relationship exists between endoge-
nous circadian rhythms and diabetes. The
findings also suggest that time of day may be
an important consideration for the diagnosis
and treatment of metabolic disorders such as
type 2 diabetes (134, 159). As discussed below,
clues from studies on the molecular genetics
of circadian clock genes may offer insight into
the molecular mechanisms underlying the di-
urnal variation in glucose metabolism.

MOLECULAR CLOCK
COMPONENTS

Amid much skepticism that single gene mu-
tations could affect such complex behavioral
processes as circadian rhythms, the first clock
mutant, period, was identified in Drosophila
melanogaster in 1971 (82). However, it was not
until more than two decades later that the
first mammalian circadian gene, circadian loco-
motor output cycles kaput (Clock), was identified
in a large-scale chemical mutagenesis screen
for circadian variants in mice (167). Clock is
a semidominant mutation, and homozygous
Clock mutant animals have an initial free-
running period of approximately 27–28 hours
and become arrhythmic in constant darkness.
Positional cloning and genetic rescue exper-
iments identified Clock as a member of the
basic helix-loop-helix period-ARNT-single-
minded (bHLH-PAS) transcription factor
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family (80, 167). Since this initial discovery
more than a decade ago, the identification of
additional genes that are expressed with pro-
nounced circadian rhythmicity has progressed
rapidly and has revealed that circadian gene
expression in mammals is controlled by au-
toregulatory transcription-translation feed-
back loops, similar to those found in other
prokaryotes and eukaryotes (17).

CLOCK heterodimerizes with another
bHLH-PAS family protein, BMAL1 (brain
and muscle ARNT-like; also known as
MOP3), and this heterodimer constitutes
the positive limb of the circadian feed-
back loop mechanism (Figure 1). The
CLOCK/BMAL1 complex activates tran-
scription of target genes containing E-box cis-
regulatory enhancer elements (5′-CACGTG-
3′), including the period (Per1, 2, and 3) and
cryptochrome (Cry 1 and 2) genes (26, 64, 79,
84, 180). The PER and CRY proteins com-
prise the negative limb of the feedback loop;
upon translation, PER and CRY proteins mul-
timerize and subsequently translocate to the
nucleus and directly inhibit the transcriptional
activity of the CLOCK/BMAL1 complex (64,
89, 113, 133, 138). PER and CRY are phos-
phorylated and degraded, in part through the
action of the casein kinases I epsilon and
delta (CKIε/δ) (6, 51, 89, 94), and as a re-
sult, the CLOCK/BMAL1 heterodimer is re-
leased from inhibition and is free to reiniti-
ate transcription. In addition to the Per and
Cry targets, CLOCK/BMAL also activates
transcription of the orphan nuclear recep-
tors Rev-erbα and Rorα (5, 118, 132, 158).
REV-ERBα and retinoic acid–related orphan
receptor RORα subsequently compete for
binding to the retinoic acid–related orphan
receptor response elements (ROREs) in or-
der to repress or activate, respectively, tran-
scription of Bmal1 (5, 66, 118, 132). This en-
tire autoregulatory cycle takes approximately
24 hours to complete before cycling anew.

Targeted gene knockout strategies have re-
vealed functional roles for each of the core
clock components in the generation of circa-
dian rhythms. Mice lacking Bmal1 exhibit a

complete loss of circadian rhythmicity in con-
stant darkness (25), and as described above,
mice with a dominant-negative Clock muta-
tion have a four-hour increase in period length
and become arrhythmic in constant darkness
(80, 167). However, a recent report has ques-
tioned the absolute requirement for CLOCK
in the generation of circadian rhythms be-
cause of the finding that Clock knockout mice
retain rhythmic activity (50). A possible expla-
nation for the lack of an observable effect on
circadian rhythms in these animals is that the
Clock homolog neuronal PAS domain protein
2 (Npas2) could functionally compensate for
the lack of Clock (50). Knockout studies tar-
geting components in the negative limb of the
circadian clock have revealed additional exam-
ples of functional redundancy within the clock
machinery. Although mice lacking any one of
the Per or Cry genes individually have subtle
circadian phenotypes that alter period length
by ∼1 hour or less (with the exception of Per2,
which shortens the period by 1.5 hours and
leads to eventual arrhythmicity in constant
darkness), the double mutants Per1/Per2 and
Cry1/Cry2 experience a complete loss of circa-
dian rhythmicity (12, 30, 164, 168, 180, 181).
While our knowledge of the clock machinery
has attained a level of detail perhaps exceed-
ing that of any other neurobehavioral gene
pathway, it is likely that additional genes and
components of the core clock machinery have
yet to be identified.

LOCALIZATION OF THE
CIRCADIAN CLOCK

Studies of the molecular components of the
clock have provided a powerful new frame-
work to better understand the temporal con-
trol of physiology and behavior at the cell
and whole animal levels. The concept that
distinct circadian centers, or pacemakers, di-
rect organismal timekeeping was validated by
studies performed in the 1960s and 1970s
that identified circadian pacemaker centers in
insects (in the optic lobe), mollusks (in the
eye), and birds (in the pineal gland) (56, 63,
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Oscillator: a system
of components that
produces a circadian
rhythm

Clock-controlled
gene: a gene whose
expression is
rhythmically
regulated by a clock

109). In mammals, lesioning studies in rats re-
vealed that rhythmic locomotor and feeding
activity required the central circadian pace-
maker in the SCN within the anterior ventral
hypothalamus. Evidence for a definitive role
for the SCN as a “master pacemaker” came
from studies wherein the circadian locomo-
tor activity rhythm of SCN-lesioned hamsters
with a short period was restored by trans-
plantation of the SCN from a wild-type an-
imal (121). Interestingly, such transplantation
studies also revealed that the restored rhythms
of the host always matched the rhythms of the
donor, implying that circadian period length
is determined by the SCN (121). Further-
more, despite lack of neuronal connections
between the grafted SCN and the host brain,
transplantation of donor SCN tissue into
hosts with lesioned SCN partially restored
their circadian rhythms, suggesting that a
diffusible secreted molecule, such as trans-
forming growth factor-α or prokineticin-2,
might be responsible for generation of circa-
dian rhythms from the SCN (2, 34, 83, 143).
However, while circadian locomotor activity
is restored by SCN transplants, circadian en-
docrine rhythms of corticosteroid or mela-
tonin secretion are not (104), suggesting that
in addition to secreted factors, neural efferents
must also be critical for generation of certain
circadian rhythms.

Intriguingly, a major transformation in our
understanding of circadian biology came from
the discovery that circadian rhythms and the
core clock machinery are also present in most,
if not all, peripheral tissues, as well as in extra-
SCN regions of the brain (Figure 2). Main-
tenance of sustained rhythms in cultured fi-
broblasts following a serum shock was the
first demonstration that non-neuronal mam-
malian cells have the autonomous capacity for
generating circadian rhythms (14). It was sub-
sequently demonstrated that self-sustaining
oscillations could be observed in explants in a
variety of tissues including muscle and liver by
using luciferase as a reporter of Per1 or Per2
expression (173, 174, 177, 178). The SCN,
which is directly entrained by photic input

from the retinohypothalamic tract, synchro-
nizes the timing of the clocks in the periph-
eral tissues; destruction of the SCN in rats
abolishes synchronization of peripheral oscil-
lators (128). Furthermore, the phase of pe-
ripheral clocks is delayed approximately four
hours compared to that of the SCN (14). In-
terestingly, the phase of the peripheral clocks
can be uncoupled from that of the SCN in re-
sponse to hormonal signals (such as glucocor-
ticoids) and restricted feeding (15, 41, 151).
Restricting the availability of food to a lim-
ited period during the light cycle rapidly en-
trains the peripheral tissues of mice; within
two days of the start of a restricted feed-
ing regimen, circadian rhythms in the pe-
riphery are essentially inverted while rhythms
in the SCN remained unchanged (41, 151).
Thus, feeding time, rather than light, appears
to be the dominant zeitgeber for peripheral
clocks.

Although the mammalian core circadian
components are well defined, the molecular
effectors acting downstream of the core circa-
dian clock machinery that link the circadian
regulation to metabolism and physiological
processes are much less clear. One example
of a well-studied Clock-controlled gene is the
D-element binding protein (Dbp), encoding a
helix-loop-helix winged transcription factor
that regulates the transcription of genes con-
taining an insulin-response element. Oscilla-
tions in the Clock gene in liver induce 100-
fold changes in the expression of Dbp, which,
in turn, regulates the rhythmic transcription
of key genes involved in gluconeogenesis and
lipogenesis (87).

The development of DNA microarray
technology has greatly expanded our ability
to examine the downstream effectors of the
core clock machinery, particularly in periph-
eral tissues. Gene expression profiling has re-
vealed that a surprisingly large number of
transcripts (approximately 5%–10% of the
transcriptome) display a 24-hour variation in
mRNA expression levels within the SCN,
liver, heart, vasculature, and fat (116, 119,
152, 161). Furthermore, very few of these
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genes show coordinate circadian regulation
between tissues, suggesting a high degree of
tissue specificity in the output of the Clock-
controlled genes. Profiling of the circadian pro-
teome has further revealed that up to 20%
of proteins are subject to circadian control in
the liver (122). Surprisingly, however, almost
half of these cycling proteins did not have
correspondingly cycling transcripts, suggest-
ing that circadian regulation also exists at a
post-transcriptional level (122). Importantly,
both the transcriptome and proteome stud-
ies have highlighted a key role for the circa-
dian regulation of a number of genes and/or
proteins involved in intermediary metabolic
processes, including oxidative phosphoryla-
tion, carbohydrate metabolism and trans-
port, lipid biogenesis, cholesterol biosynthe-
sis, and proprotein processing (116, 119, 152,
161). These studies suggest that circadian
regulation may provide a temporal mecha-
nism to coordinate and/or separate a diverse
range of interdependent chemical reactions in
the cell.

COMMUNICATION BETWEEN
SCN AND CNS CENTERS
CONTROLLING ENERGY
BALANCE AND METABOLISM

Map of Circadian Centers

There are several levels at which circadian
and metabolic systems may affect metabolism
within the whole animal. In taking a top-down
approach, it is useful to consider first how
circadian signaling centers within the brain
are connected to regions involved in appetite
control, energy expenditure, and metabolism
(Figure 3). For example, neural tracing stud-
ies have revealed numerous projections from
the SCN to hypothalamic cell clusters that ex-
press orexigenic and anorexigenic neuropep-
tides (154, 170). The largest output of SCN
projections is directed toward the subparaven-
tricular zone (SPZ) and the dorsomedial nu-
cleus of the hypothalamus (DMH) (131). The
role of each of these hypothalamic regions in

SPZ:
subparaventricular
zone

DMH: dorsomedial
hypothalamus

the regulation of circadian rhythms was deter-
mined by elegant studies using neurotrophic
toxins (35, 95). Destruction of the ventral SPZ
(vSPZ) reduced circadian rhythms of sleep-
wakefulness and locomotor activity but had
little effect on circadian regulation of body
temperature (95). Conversely, degeneration
of the dorsal SPZ (dSPZ) disrupted circadian
regulation of body temperature with minimal
effect on sleep-wakefulness and locomotor ac-
tivity (95), thus demonstrating a dissociation
of circadian regulation of sleep-wakefulness
and body temperature (131). Electrode ab-
lation of the DMH cell bodies, which re-
ceive inputs from both the SCN and the SPZ,
resulted in severe impairment of circadian-
regulated sleep-wakefulness, locomotor activ-
ity, corticosteroid secretion, and feeding (35).
Furthermore, the DMH has many outputs to
other regions of the brain, including the ven-
trolateral preoptic nucleus, the paraventric-
ular nucleus, and the lateral hypothalamus,
which regulate sleep, corticosteroid release,
and wakefulness/feeding, respectively. Thus,
the DMH constitutes a gateway between the
master pacemaker neurons of the SCN and
cell bodies located within brain centers impor-
tant in energy homeostasis (Figure 3). Inter-
estingly, the DMH has also been implicated
in the ability of organisms to be entrained
by restricted feeding; a subset of DMH neu-
rons show robust Per2 oscillations follow-
ing restricted feeding, and ablation of the
DMH eliminates the altered sleep-wake, ac-
tivity, and feeding rhythms characteristic of
food-restricted animals (64a, 105). However,
controversy remains concerning the precise
anatomic localization of the food-entrainable
oscillator because Landry et al. (85a) have re-
ported that DMH ablation fails to disrupt this
phenomena.

Map of Energy Centers

While studies of SCN architecture have ad-
vanced our understanding of CNS timekeep-
ing, a distinct line of investigation has fo-
cused on the localization of neuronal centers
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ARC: arcuate
nucleus

CART: cocaine-
and amphetamine-
regulated
transcript

α-MSH:
α-melanocyte-
stimulating hormone

NPY: neuropeptide
Y

AgRP:
agouti-related
protein

involved in energy balance and feeding behav-
ior (71). Classical lesioning studies performed
more than 50 years ago demonstrated that
distinct regions of the hypothalamus control
hunger and satiety. Destruction of the ven-
tromedial hypothalamic (VMH), PVH, and
DMH regions resulted in obesity (7, 23, 69,
70), whereas ablation of the lateral hypothala-
mus (LH) resulted in anorexia (7). Although
these relatively nonselective approaches did
not provide a molecular entrée into under-
standing the hypothalamic regulation of ap-
petite and food intake, they did provide an
anatomical framework for future studies ex-
amining the integration of hormonal and
nutrient signals at the level of specific hy-
pothalamic regions. The suggestion that hu-
moral factors might be responsible for the
control of appetite and energy expenditure
was first made by Coleman and colleagues
(37, 38) in the late 1960s and early 1970s, fol-
lowing parabiosis experiments between two
genetic mouse models of obesity, the obese
(ob/ob) and diabetic (db/db) mice, that suggested
that the ob/ob gene encoded a secreted factor,
whereas the db/db gene encoded its cognate
receptor. Ultimately, a major breakthrough
in our molecular understanding of hypotha-
lamic regulation of energy balance came with
the positional cloning of leptin, a secreted
adipocyte-derived factor, as the product of the
ob/ob gene (179). Subsequently, expression and
positional cloning identified the protein prod-
uct deficient in db/db mice as the leptin recep-
tor (33, 36, 90, 156). Administration of leptin
to ob/ob mice decreased food intake and body
weight and corrected neuroendocrine abnor-
malities (28, 67, 117). Importantly, Ahima
et al. (3) showed that low levels of leptin dur-
ing fasting suppress reproductive function and
energy expenditure. The fact that leptin is se-
creted from adipocytes in proportion to total
body adipose mass (59, 96), that leptin is ex-
pressed in a circadian fashion in addition to
fluctuating in response to fasting and feed-
ing (4, 76, 91, 92, 135, 145), and that the
leptin receptor is highly expressed in various
regions within the hypothalamus, including

the arcuate nucleus (ARC), DMH, and VMH
nuclei (54), suggests that humoral signals de-
rived from peripheral tissues may communi-
cate the nutritional status of the organism to
the hypothalamic centers controlling hunger
and satiety in a circadian-dependent manner.

Additional insight into the neural control
of energy homeostasis came with the discov-
ery of the melanocortin system as downstream
of leptin (57, 72). Leptin, a satiety signal, stim-
ulates pro-opiomelanocortin (POMC) and
cocaine- and amphetamine-regulated tran-
script (CART)-expressing neurons within the
ARC to produce α-melanocyte-stimulating
hormone (α-MSH), which subsequently ac-
tivates the melanocortin receptor subtype 4
(MC4) and results in decreased food intake
and increased energy expenditure (1, 39).
Leptin also suppresses a distinct set of neu-
ropeptide Y (NPY) and agouti-related protein
(AgRP)-expressing ARC neurons that, when
active, antagonize the effect of α-MSH on the
MC4 receptor through release of AgRP (114,
120, 124) and inhibit the POMC/CART-
expressing neurons through release of the
small inhibitory amino acid neurotransmit-
ter γ-aminobutyric acid (40). In the absence
of leptin, such as during the fasted state, the
orexigenic NPY/AgRP neuropeptides cause
decreased energy expenditure and increased
appetite (16, 52, 53, 99, 150). The integration
of signaling by agonists (α-MSH) and antag-
onists (AgRP) of the melanocortin receptor
is pivotal in the weight-regulating effects of
leptin in the central nervous system.

Both POMC/CART and NPY/AgRP
ARC neurons project to multiple nuclei in-
volved in feeding behavior, some of which also
receive input from the SCN and display pro-
nounced circadian rhythms of gene expres-
sion (40, 52, 54, 55). These include neurons in
the lateral hypothalamic area that produce the
hunger-stimulating neuropeptides melanin-
concentrating hormone (MCH) and orexins
A and B (58, 60, 136). Targeted deletion stud-
ies of MCH resulted in hypophagic lean mice
with a high metabolic rate and demonstrated
that MCH acts downstream of leptin and the
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melanocortin system (140). Orexins A and B
are two neuropeptides generated from a sin-
gle transcript that display a circadian rhythm
of expression and are strongly induced by fast-
ing (153, 172). Intracerebroventricular injec-
tion of orexin A stimulates food intake acutely
in rats, in part through excitation of NPY in
the ARC (130, 153); however, the long-term
effects of orexins on energy balance are not
yet fully established.

Genetic studies have also uncovered a role
for the orexins in the regulation of sleep-wake
rhythms. Mutations in the orexin B recep-
tor were found to cause narcolepsy in two in-
dependent canine populations (93, 172), and
deletion of the orexin gene results in nar-
colepsy in mice (31). Narcoleptic humans also
have decreased orexin levels (111) and, in-
terestingly, increased body mass index levels
(110). Furthermore, the finding that orexin-
producing neurons project to extensive re-
gions within both the cortex and brainstem
is consistent with a role for these neuropep-
tides in modulating arousal and autonomic
function (45, 46). It is also important to note
that additional neuromodulators involved in
both feeding and alertness, including the his-
taminergic and serotinergic transmitters, may
have combined effects on alertness, circadian
rhythmicity, and metabolism (100, 101, 157).
The complete identity of both chemical and
anatomic pathways through which organisms
balance the homeostatic needs of sleep and
fuel metabolism remains an active area of
investigation.

INTERCONNECTIONS
BETWEEN CIRCADIAN GENE
PATHWAYS AND METABOLISM

A unifying principle to have emerged from
studies of circadian timekeeping and energy
balance is that both of these dynamic pro-
cesses exhibit a hierarchical organization in
which the brain drives the function of periph-
eral tissues. Furthermore, as reviewed above,
the circadian and energetic centers are inti-
mately connected at both a neuroanatomical

and neuroendocrine level. More recent stud-
ies suggest that such interconnections also
extend to coregulation of metabolic and circa-
dian transcription networks within individual
peripheral tissues and cells. A major advance
in our awareness of the temporal organiza-
tion of metabolic processes stemmed from
the landmark discovery by Schibler and col-
leagues (14) that peripheral tissues express
self-sustained periodic oscillators. The fol-
lowing sections focus on recent evidence that
suggests that a reciprocal relationship exists
between the circadian and metabolic gene
pathways.

Circadian Transcriptional Networks
Promote Metabolic Homeostasis

Mounting evidence suggests that many es-
sential metabolic pathways are subject to
circadian control. For example, a vast num-
ber of nuclear receptor (NR) proteins ex-
hibit circadian patterns of gene expression
in a variety of metabolic tissues (175). NR
proteins are transcription factors activated by
the binding of endocrine hormones, such as
steroid and thyroid hormones, vitamins, and
dietary lipids, and these proteins regulate a
diverse range of metabolic processes, includ-
ing lipid and carbohydrate metabolism (32).
Thus, it is possible that the circadian rhyth-
micity of NRs will contribute in part to the
well-documented diurnal variations in lipid
and glucose metabolism.

As described above, CLOCK/BMAL
heterodimers positively regulate the tran-
scription of the orphan nuclear receptor Rev-
erbα, which subsequently inhibits transcrip-
tion of Bmal1 as part of a cell-autonomous
feedback loop (66, 118). In addition to its
regulation by the core clock complex, Rev-
erbα is also regulated by a host of metabolic
processes, including adipogenesis and carbo-
hydrate metabolism, which in turn may af-
fect the circadian clock through their actions
on Rev-erbα. For example, Rev-erbα mRNA
levels increase dramatically during adipocyte
differentiation (31), and REV-ERBα is
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phosphorylated and stabilized by glycogen
synthase kinase 3 (176). Furthermore, Rev-
erbα transcription is inhibited by retinoic acid
(31), levels of which are increased in the
metabolic syndrome (175), and the retinoic
acid–related orphan receptor RORα has been
shown to regulate lipogenesis and lipid stor-
age in muscle in addition to its role as a posi-
tive transcriptional regulator of Bmal1 (95).

The circadian rhythmicity of another
NR family member, peroxisome proliferator-
activated receptor α (PPARα), provides a fur-
ther example of a reciprocal link between
circadian and metabolic processes. As with
RORα, the CLOCK/BMAL heterodimer ac-
tivates transcription of PPARα, which subse-
quently binds to the peroxisome-proliferator
response element and activates transcription
of Bmal1. PPARα regulates the transcrip-
tion of genes involved in lipid and glucose
metabolism upon binding of endogenous free
fatty acids to its receptor. These data are
concordant with the finding that BMAL1-
deficient embryonic fibroblasts fail to differ-
entiate into adipocytes (141) and demonstrate
that PPARα may also play a unique role at the
intersection of circadian and metabolic path-
ways.

Emerging studies from experimental ge-
netic models support a central role for clock
genes in the regulation of energy balance
and metabolism. Both Clock mutant and
Bmal1−/− mice develop not only circadian de-
fects, but also metabolic deficits in glucose
and lipid homeostasis (125, 160). An analysis
performed on C57BL/6J Clock/Clock mutant
and coisogenic wild-type mice revealed that
Clock mutant mice have an attenuated diurnal
feeding pattern, are hyperphagic and obese,
and develop metabolic abnormalities, includ-
ing hyperleptinemia, hyperlipidemia, hepatic
steatosis, hyperglycemia, and hypoinsuline-
mia. Furthermore, Clock mutant mice had re-
duced levels of the orexigenic neuropeptides
orexin and ghrelin (160). On mixed genetic
backgrounds, Rudic et al. (125) reported de-
creased gluconeogenesis in both Clock mutant
and Bmal1−/− mice, in addition to suppres-

sion of the normal diurnal variation in glu-
cose and triglycerides. Additional studies, re-
cently reviewed by Kohsaka & Bass (81), have
also pointed to a role for the clock genes in
adipocyte hypertrophy and the response to
diet-induced obesity in vivo, in addition to the
importance of considering strain background.
A fascinating question remains as to whether
the metabolic phenotypes of the Clock and
Bmal1 mutant animals are dependent or in-
dependent on the circadian function of these
conserved genes. A deeper understanding of
the cell-autonomous function of each gene
will lead to better insight into their pheno-
types and open new windows on manipula-
tions to enhance metabolic function under cir-
cumstances of circadian disruption. Finally, it
is interesting to speculate that clock genes rep-
resent an example of convergent evolution be-
cause the pressure to preserve energy and to
adhere to a light/dark cycle may have coex-
isted during the origins of life.

Nutrient and Metabolic Signaling in
Circadian Rhythms and Sleep

Feeding and sleep/circadian rhythmicity.
Although the aforementioned studies clearly
demonstrate that many central metabolic
pathways are subject to circadian control, sev-
eral studies have revealed that the reciprocal
relationship also holds true: i.e., alterations
in metabolism disrupt sleep-wake patterns
and/or circadian rhythmicity. For example,
mice fed a high-fat diet have increased sleep
time, particularly in the nonrapid eye move-
ment (NREM) stage, but decreased sleep con-
solidation (75). On the other hand, food de-
privation results in decreased sleep time (43,
107) and a more fragmented sleep pattern in
rats (21). The refeeding period following food
deprivation in these animals is accompanied
by lengthened sleep time (139) and varies as
a function of the nutritional content of the
food (107). In addition to diet-induced alter-
ations in sleep architecture, genetic mouse
models of obesity have similarly demon-
strated disrupted sleep-wake patterns. The
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leptin-deficient ob/ob mouse exhibits hyper-
phagia, obesity, and stigmata of the metabolic
syndrome, including hyperglycemia, insulin
resistance, and dyslipidemia (73, 179). These
mice have recently been shown to have in-
creased NREM sleep time, decreased sleep
consolidation, decreased locomotor activity,
and a smaller compensatory rebound response
to acute sleep deprivation (86). Similarly, rats
harboring mutations in the leptin receptor
display increased sleep time and decreased
sleep consolidation (42, 102). Evidence has
begun to emerge suggesting that metabolic
disorders may also affect circadian rhythmic-
ity. For example, the circadian expression of
a number of genes is attenuated in the fat
and liver of obese KK-A(y) mice, a poly-
genic model for noninsulin-dependent dia-
betes mellitus (8, 9).

Molecular sensors linking metabolism and
circadian rhythmicity. A major question re-
sulting from these studies concerns the nature
of the molecular link between the regula-
tion of metabolism and circadian rhythmic-
ity, particularly in the peripheral tissues. Is
there a molecular “sensor” common to the
regulation of both of these processes? One
possible explanation for the interdependence
of metabolic and circadian processes stems
from the finding that changes in the cellu-
lar redox status of cells, represented by the
nicotinamide adenine dinucleotide cofactors
NAD(H) and NADP(H), regulate the tran-
scriptional activity of the bHLH proteins
CLOCK and its homolog NPAS2. The re-
duced forms of these redox cofactors enhance
DNA binding of the CLOCK/BMAL1 and
NPAS2/BMAL1 heterodimers, whereas the
oxidized forms inhibit binding (126). Thus, it
is possible that direct modulation of the redox
state in response to feeding, for example, may
provide an additional level of regulation of the
circadian clock and may serve as a molecu-
lar link between metabolic and circadian pro-
cesses. However, how metabolic sensors affect
circadian processes in vivo remains an area of
active investigation.

Hormones and sleep. Within the whole an-
imal, numerous studies have revealed that
various hormones and neuromodulators have
overlapping roles in regulating metabolism
and sleep, and by extension, may be in-
volved in synchronizing these processes. For
example, acute administration of leptin, an
adipocyte-derived circulating hormone that
acts at specific receptors in the hypothalamus
to suppress appetite and increase metabolism,
decreases REM and increases NREM sleep
time in rats (144). Furthermore, leptin-
deficient mice have significantly disrupted
sleep architecture with impaired sleep consol-
idation and diurnal rhythmicity, as described
above (86). Increased levels of other anorectic
hormones, including gastrointestinal tract–
derived cholecystokinin and pancreatic β

cell–derived insulin also increase sleep time
in rodents (44, 97). Ghrelin, an orexigenic
stomach-derived hormone, has been shown to
increase NREM sleep in both rodents and hu-
mans (112, 171), whereas orexin/hypocretin
neuropeptides, produced by a small subset of
neurons within the lateral, posterior, and per-
ifornical hypothalamus in response to fasting,
stimulate food intake, locomotor activity, and
wakefulness (46, 129). Interestingly, the re-
ceptor for orexin/hypocretin has been shown
to be the causative genetic defect in the most
common form of canine narcolepsy (93). The
regulation of both metabolism and wakeful-
ness by these neuroendocrine factors suggests
that coordination of periods of fasting with
sleep and feeding with wakefulness is impor-
tant. These observations also have potential
implications for the pharmacological develop-
ment of therapies for both sleep and metabolic
disease. Lack of sleep or altered metabolism
may disrupt these homeostatic conditions, re-
sulting in activation of metabolic pathways
that lead to increased food intake or altered
sleep architecture, respectively.

CONCLUSIONS/PERSPECTIVES

Remarkable advances in mammalian experi-
mental genetics heralded by the discoveries
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of leptin in 1994 and the Clock gene in 1997
have transformed our understanding of both
metabolism and circadian rhythmicity. A ma-
jor theme to have emerged has been the find-
ing that perturbation of either CNS pathways
or those within peripheral metabolic tissues
contribute to diabetes and obesity and are im-
portant in basal homeostasis. Compelling new
evidence reviewed above has uncovered an
interconnection between temporal regulation
and metabolic processes that may have im-
plications for understanding human diseases
such as sleep disorders and diabetes. With the
molecular road map now in hand to unlock the
key to internal timekeeping, new opportuni-
ties are available to integrate studies of behav-

ior and metabolism. One conclusion that can
already be drawn is that metabolic processes
are highly dynamic and subject to strong vari-
ation across the 24-hour light/dark cycle at
both the molecular and physiologic levels.
One implication is that introducing tempo-
ral analyses in studies of metabolism may lead
to the discovery of previously unrecognized
phenotypes. At the cellular level, the challenge
will be to define the impact of the clock gene
network on specific metabolic processes. At
the organismal level, the integration of circa-
dian and metabolic analyses may lead us closer
to a unified understanding of how internal sys-
tems have evolved to optimize survival across
the daily light/dark changes in environment.
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Figure 1

Central mechanism of the clock in all cells. The mammalian circadian clock consists of a network of
transcription-translation feedback loops. The transcription factors circadian locomotor output cycles
kaput (CLOCK) and brain and muscle ARNT-like (BMAL)1 heterodimerize and activate transcription
of downstream targets, including the period, cryptochrome, Ror, and Rev-Erb genes, which contain E-box
enhancer elements within their promoters. Upon translation, the period (PER) and cryptochrome
(CRY) proteins multimerize and inhibit the action of the CLOCK/BMAL1 complex. Phosphorylation
of PERs and CRYs by casein kinases I epsilon and delta (CKIε/δ), and the subsequent degradation of
the PERs, is an important modulator of circadian rhythmicity. The retinoic acid–related orphan 
receptors (RORs) and REV-ERBs constitute another regulatory feedback loop through regulation of
Bmal1 transcription.
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Zeitgebers Clock Oscillator Clock Output
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Figure 2

Clocks coordinate feeding and metabolism with environmental cues. Although the mammalian master
pacemaker is located in the suprachiasmatic nucleus (SCN), the core clock machinery has been 
identified in most peripheral tissues, as well as in extra-SCN regions of the brain. These oscillators are
entrainable, responding to extrinsic stimuli such as light and food, and the master pacemaker 
coordinates peripheral clocks through both endocrine signals and autonomic innervation. The clock
output includes behavioral and metabolic responses, such as feeding, sleep-wakefulness, hormone 
secretion, and metabolic homeostasis. Not drawn are extensive reciprocal loops that connect clock 
output in both brain and peripheral tissues with the clock oscillators.
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Figure 3

Neuroanatomic and neuroendocrine connections within the hypothalamus. The largest output of 
neural projections from the suprachiasmatic nucleus (SCN) extends toward the subparaventricular zone
(SPZ) and continues from the SPZ to the dorsomedial hypothalamus (DMH). The DMH has many
outputs to other regions of the brain, including the lateral hypothalamus (LHA), which controls 
circadian regulation of coordination of the alternans of sleep/wakefulness and fasting/feeding. The
LHA also receives neuroendocrine input from the arcuate nucleus (ARC). Leptin activates neuronal
cells within the ARC that express the anorexigenic neuropeptides α-MSH/CART, which in turn results
in inhibition of production of orexigenic peptides orexin (ORX) and melanin concentrating hormone
(MCH) in the LHA. In the absence of leptin, orexigenic neurons in the ARC produce neuropeptide 
Y (NPY)/agouti-related protein (AgRP) and stimulate hunger and decreased energy expenditure via
signaling to the LHA.
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